Date: 04.02.2016

Lecture – 10

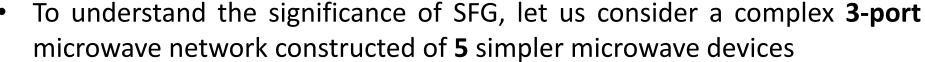
The Signal Flow Graph

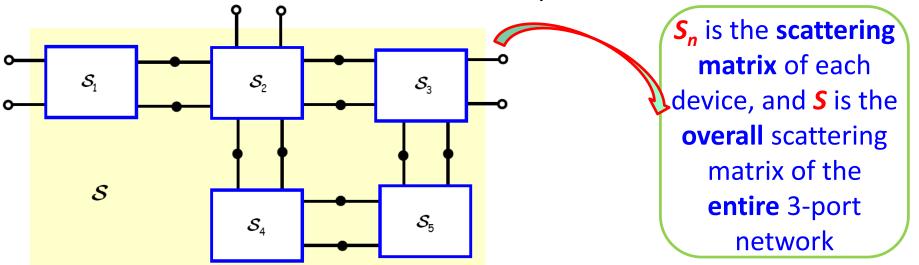
Signal Flow Graph

Q: Using individual device scattering parameters to analyze a complex microwave network results in a lot of messy math! Isn't there an easier way?

A: Yes! We can represent a microwave network with its signal flow graph (SFG) and then decompose this graph using a standard set of rules → results into simpler analysis.

It provides a sort of a **graphical** way to do algebra!





The S-parameter (S) of the whole network can be obtained from the knowledge of S-parameter of individual devices

Tedious Algebra!

Alternative is SFG based solution!

Signal flow graphs are helpful in three ways!

Way 1 – It provide us with a **graphical** means of **solving** large systems of simultaneous equations.

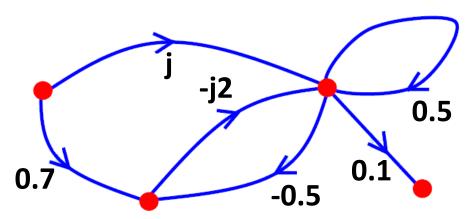
Way 2 — We'll see that it can provide us with a **road map** of the wave **propagation paths** throughout a HF device or network. If we're paying attention, we can glean great **physical insight** as to the inner working of the device represented by the graph.

Way 3 – It provide us with a quick and accurate method for approximating a network or device. We will find that we can often replace a rather complex graph with a much simpler one that is almost equivalent.

We find this to be very helpful when **designing** microwave components. From the analysis of these approximate graphs, we can often determine **design rules** or equations that are tractable, and allow us to design components with (near) optimal performance.

Some definitions!

Every SFG consists of a set of **nodes**. These nodes are connected by **branches**, which are simply contours with a specified **direction**. Similarly, each branch has an associated complex **value**.



Q: What could this possibly have to do with RF/microwave engineering?

In high frequency applications, each **port** of a device is represented by **two nodes**—the "a" node and the "b" node. The "a" node simply represents the value of the normalized amplitude of the wave incident on that port, evaluated **at** the plane of that port:

$$a_n = \frac{V_n^+ \left(z_n = z_{nP} \right)}{\sqrt{Z_{0n}}}$$

Similarly, the "b" node simply represents the normalized amplitude of the wave exiting that port, $b_n = \frac{V_n^-(z_n = z_{nP})}{\sqrt{Z_{0n}}}$ evaluated **at** the plane of that port:

$$b_n = \frac{V_n^- \left(z_n = z_{nP}\right)}{\sqrt{Z_{0n}}}$$

Then the **total voltage** at a port is simply:

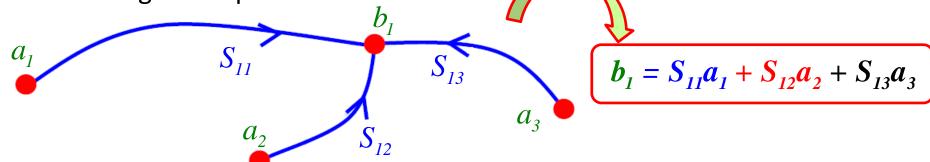
$$V_n \left(z_n = z_{nP} \right) = \left(a_n + b_n \right) \sqrt{Z_{0n}}$$

The value of the **branch** connecting two nodes is simply the value of the scattering parameter relating these two voltage values.

$$a_{n} = \frac{V_{n}^{+}(z_{n} = z_{nP})}{\sqrt{Z_{0n}}}$$

$$b_{m} = \frac{V_{m}^{-}(z_{m} = z_{mP})}{\sqrt{Z_{0m}}}$$

- The signal flow graph is simply **graphical** $b_m = a_n S_{mn}$ representation of the equation:
- Moreover, if multiple branches enter a node, then the voltage represented by that node is the sum of the values from each branch. For example, following SFG represents:

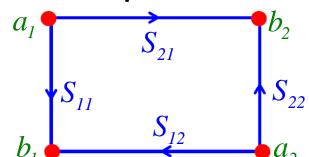


 Now, consider a two-port device with a scattering matrix S:

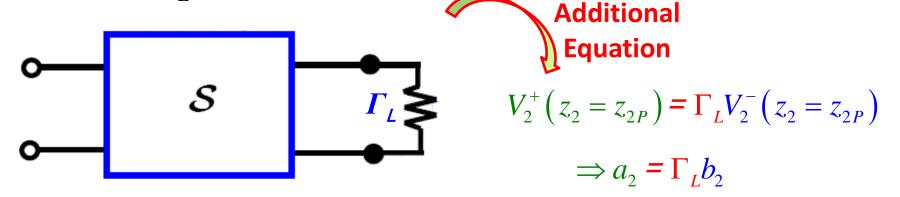
$$\boldsymbol{S} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

So that: $b_1 = S_{11}a_1 + S_{12}a_2$ $b_2 = S_{21}a_1 + S_{22}a_2$

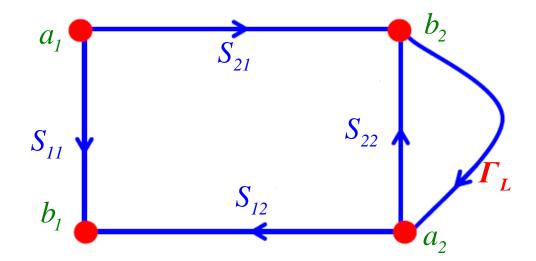
 We can then graphically represent a two-port device as:



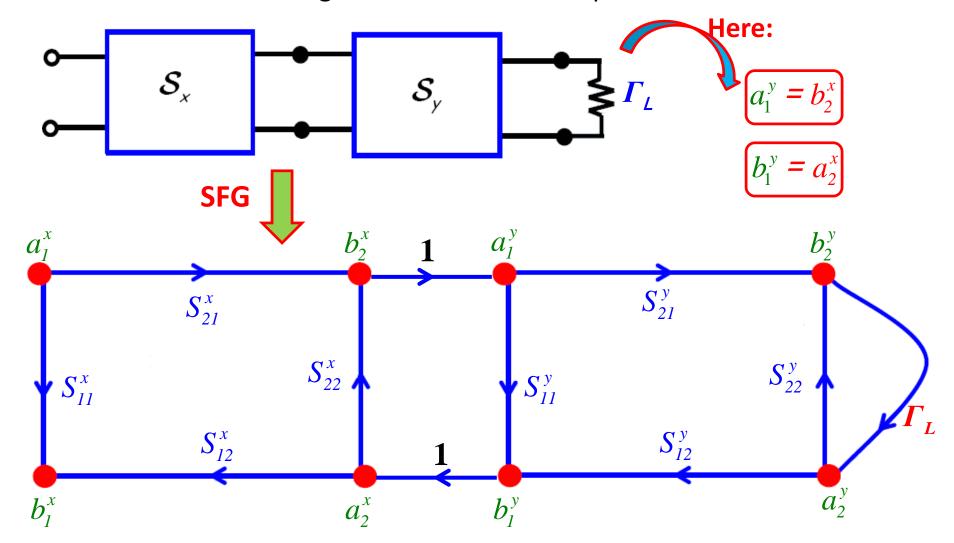
• Now, consider a two-port device where the second port is **terminated** by some load $\Gamma_{\rm L}$:



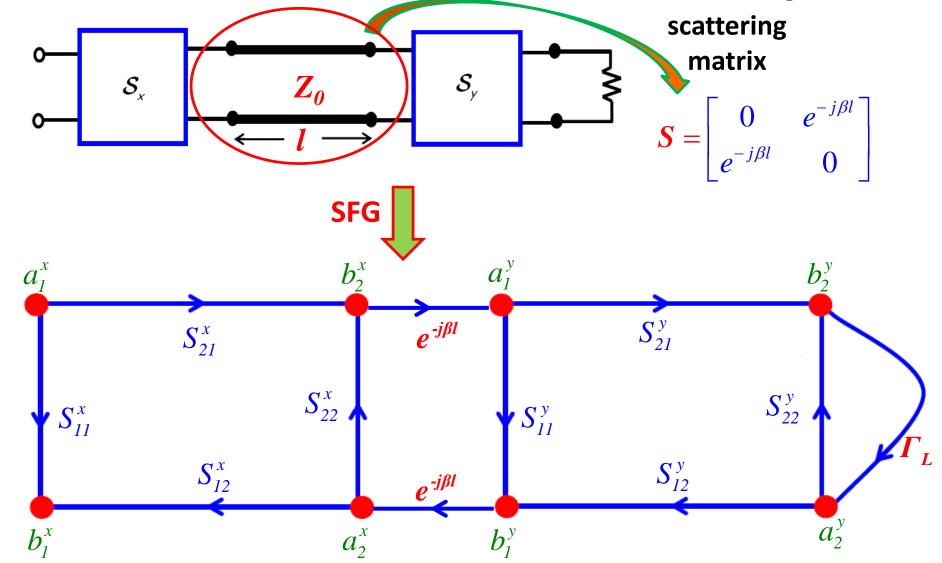
Therefore, the signal flow graph of this terminated network is:

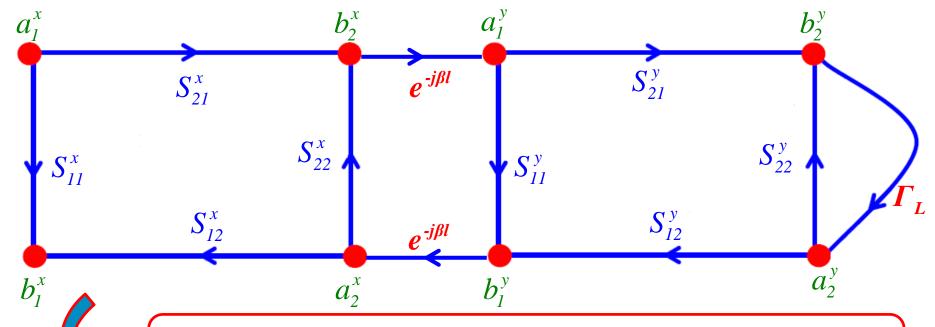


Now consider cascading of two different two-port networks



Now consider networks connected with a transmission line segment:



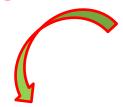


Note that there is **one** (and only one!) **independent variable** in this graphical representation (i.e., SFG) $\rightarrow a_1^x$

This is the only node of the SFG that does **not** have any **incoming** branches.

As a result, its value depends on **no other** node values in the SFG

Independent nodes in the SFG are called sources!



Independent nodes in the SFG are called sources!

- This makes sense physically (do you see why?)
- The node value a₁^x represents the complex amplitude of the wave incident on the one-port network. If this value is zero, then no power is incident on the network—the rest of the nodes (i.e., wave amplitudes) will be zero!

Now, say we wish to determine, for example:

- **1.** The **reflection coefficient** Γ_{in} of the one-port device
- 2. The total current at port 1 of second network (i.e., network y)
- 3. The power absorbed by the load at port 2 of the second (y) network.

• In the first case, we need to determine the value of dependent node b_1^x :

$$\Gamma_{in} = \frac{b_1^x}{a_1^x}$$

• For the third and final case, the values of nodes a_2^y and b_2^y are required:

• For the second case, we must determine the value of wave amplitudes a_1^y and b_1^y :

$$I_1^y = \frac{a_1 - b_1}{\sqrt{Z_0}}$$

$$P_{abs} = \frac{\left|b_{2}^{y}\right|^{2} - \left|a_{2}^{y}\right|^{2}}{2}$$

solve the **simultaneous equations** that describe this network.

How do we **determine** the values of these wave amplitude "nodes"?

Decompose (**reduce)** the SFG!

- SFG reduction is a method for simplifying the complex paths of that SFG into a more direct (but equivalent!) form.
 - Reduction is really just a graphical method of decoupling the simultaneous equations that are described by the SFG.
- SFGs can be reduced by applying one of four simple rules.

Q: Can these rules be applied in any order?

A: YES! The rules can only be applied when/where the structure of the SFG allows. You must search the SFG for structures that allow a rule to be applied, and the SFG will then be (a little bit) reduced. You then search for the next valid structure where a rule can be applied. Eventually, the SFG will be completely reduced!

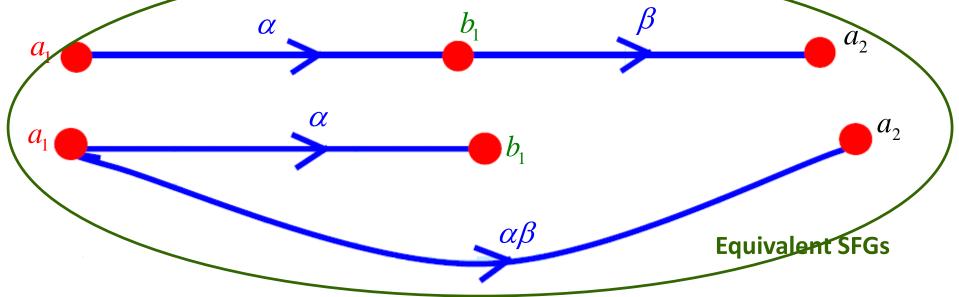
It's a bit like solving a **puzzle**. Every SFG is different, and so each requires a different reduction procedure. It requires a little **thought**, but with a little practice, the reduction procedure can be **easily** mastered → You may find its kind of a fun! (TRUST ME)

Series Rule

- Consider these two complex equations: $b_1 = \alpha a_1$ $a_2 = \beta b_1$
- These two equations can combined to form an equivalent set of equations:

$$b_1 = \alpha a_1 \qquad a_2 = \beta b_1 = \beta (\alpha a_1) = \alpha \beta a_1$$

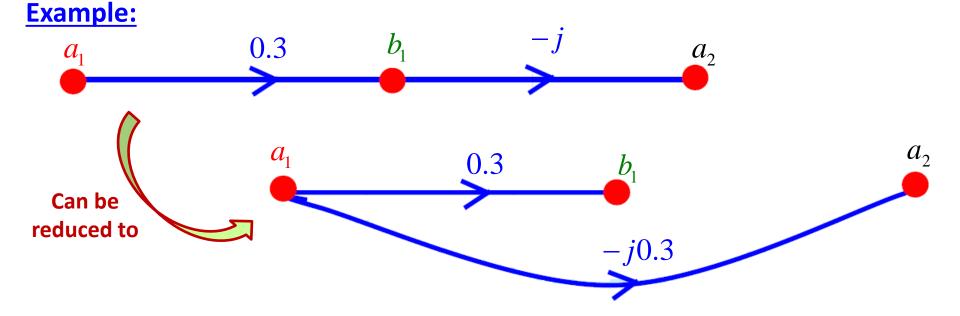
Graphically they can be represented as:



This leads us to our **first** SFG **reduction rule**:

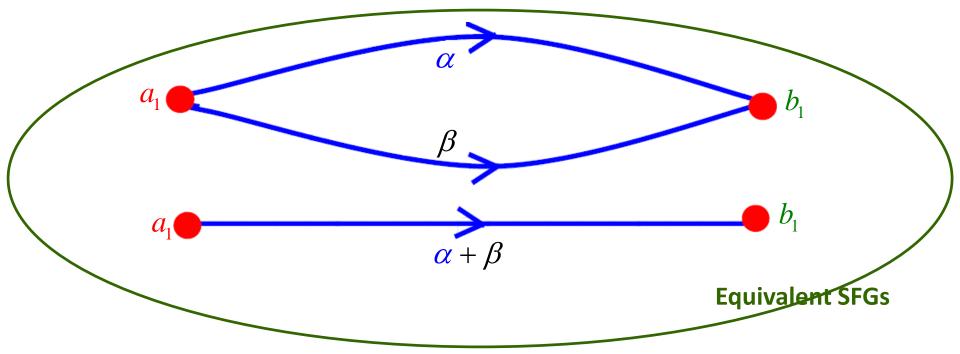
Rule 1 - Series Rule

If a node has **one** (and only one!) incoming branch, and **one** (and only one!) outgoing branch, the node can be eliminated and the two branches can be combined, with the new branch having a value equal to the product of the original two.



Parallel Rule

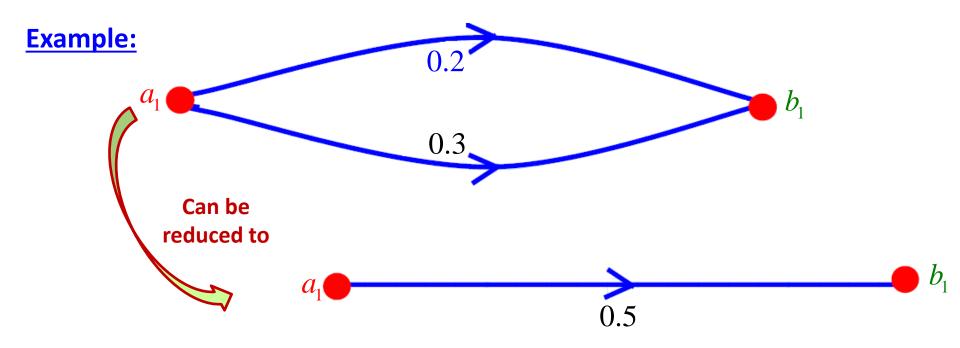
- Consider these two complex equations: $b_1 = \alpha a_1 + \beta a_1$
- The equation can also be expressed as: $b_1 = (\alpha + \beta)a_1$
- These equations can be expressed in terms of SFG as:

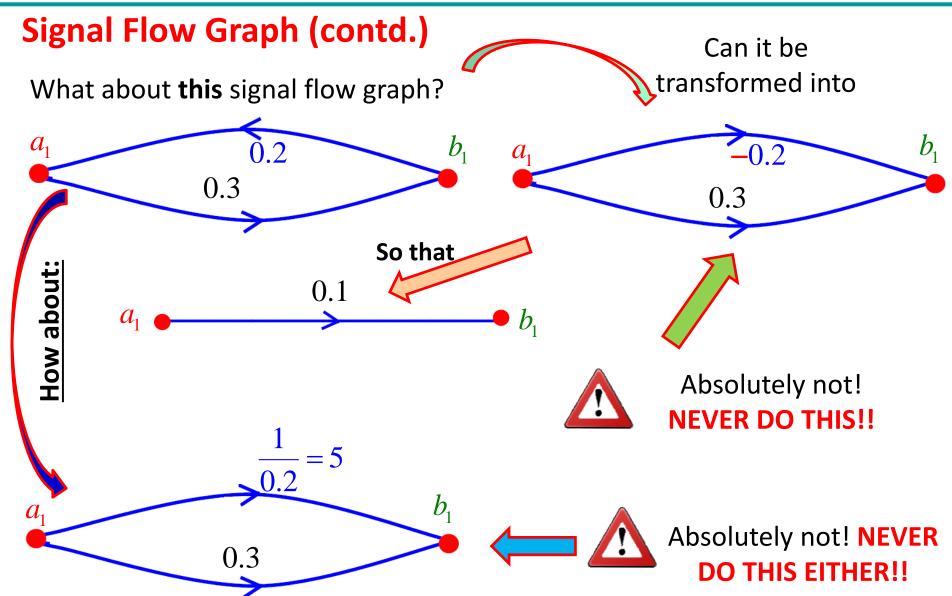


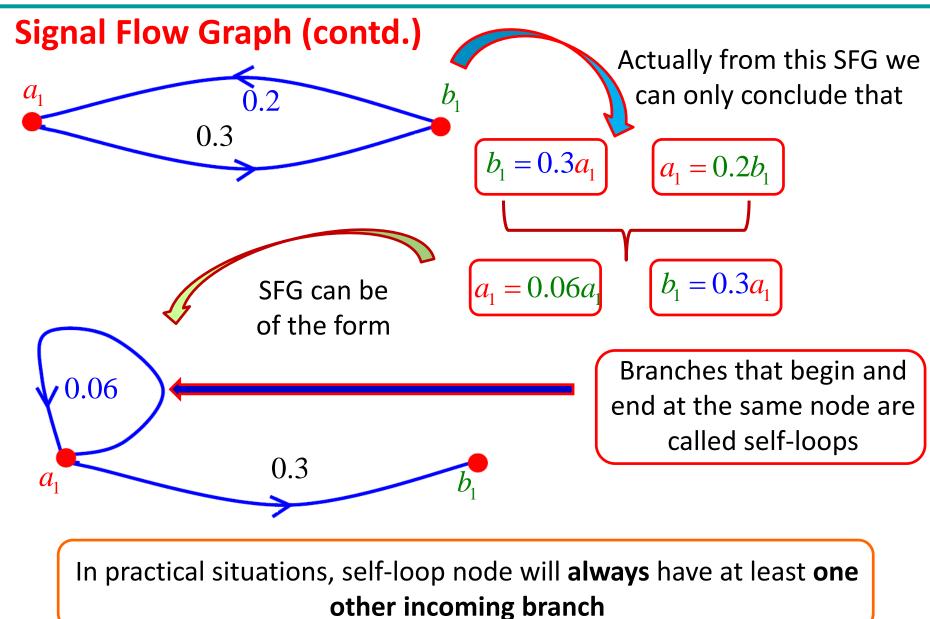
This leads us to our **second** SFG **reduction rule**:

Rule 2 - Parallel Rule

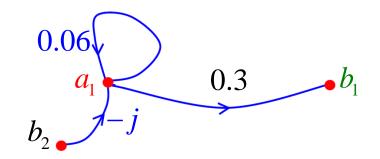
If two nodes are connected by parallel branches—and the branches have the **same direction**—the branches can be combined into a single branch, with a value equal to the **sum** of each two original branches.







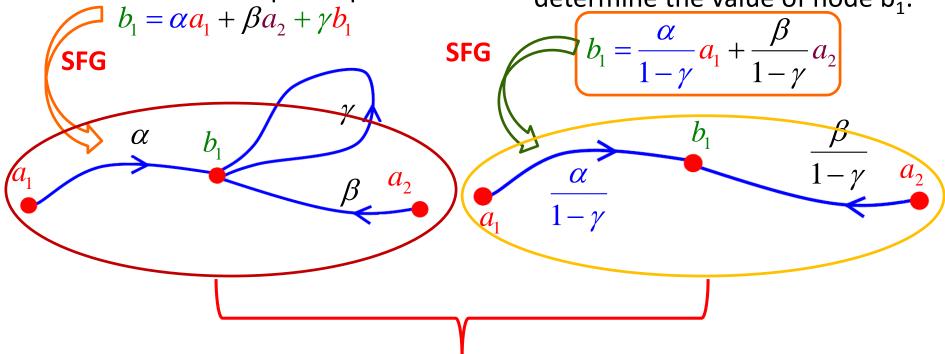
Practical example of node with self-loop:



Self-Loop Rule

Consider the complex equation:

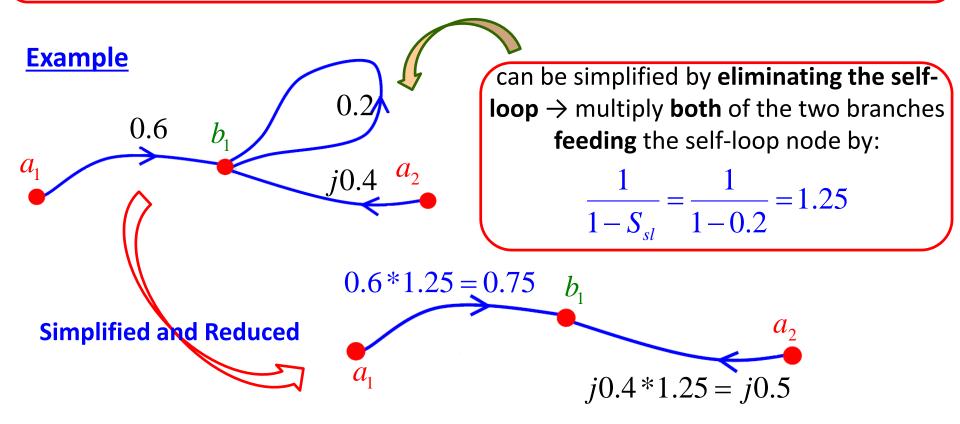
 A little bit of algebra allows us to determine the value of node b₁:

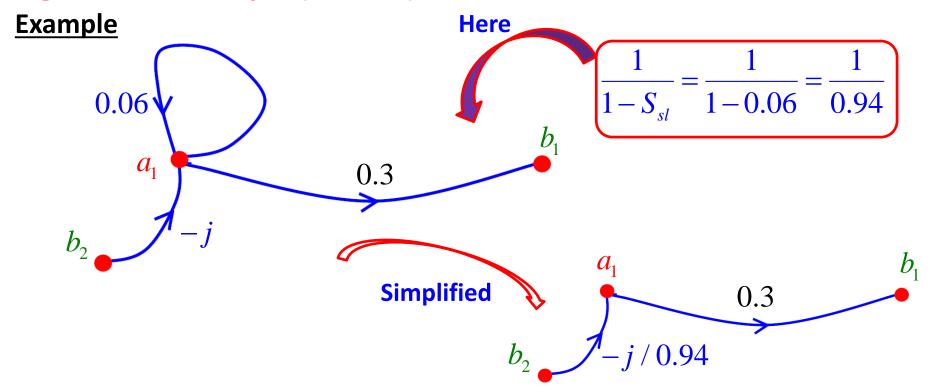


This leads us to our third SFG reduction rule:

Rule 3 - Self-Loop Rule

A self-loop can be eliminate by multiplying **all** of the branches "**feeding**" the self-loop node by $1(1-S_{sl})$, where S_{sl} is the value of the self loop branch.

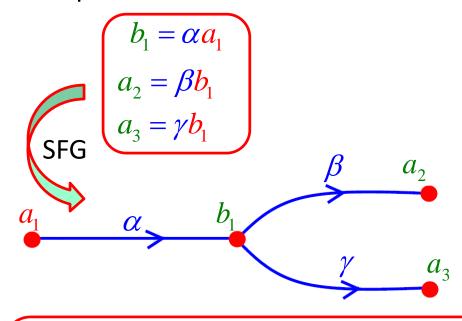




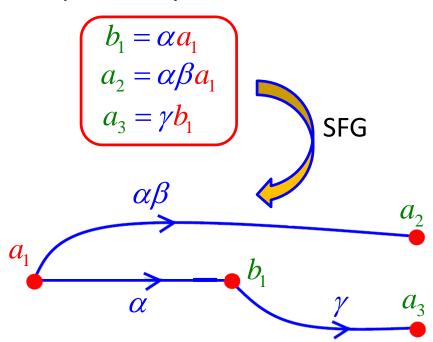
Only the incoming branches are modified by the self-loop rule! Here, the 0.3 branch is **exiting** the self-loop node a_1 and therefore doesn't get modified. **Only** the -j branch(incoming at node a_1) to the self-loop node are modified by the self-loop rule!

Splitting Rule

Now consider the three equations

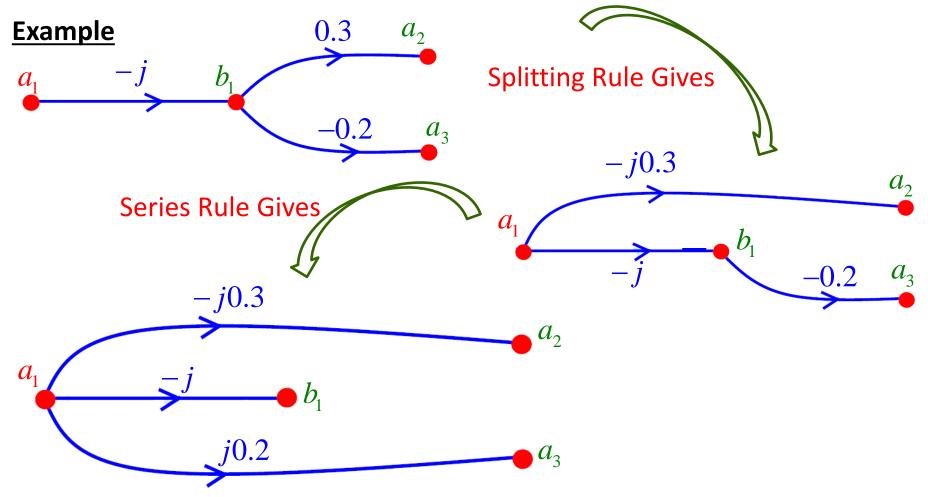


 These equations can be equivalently written as



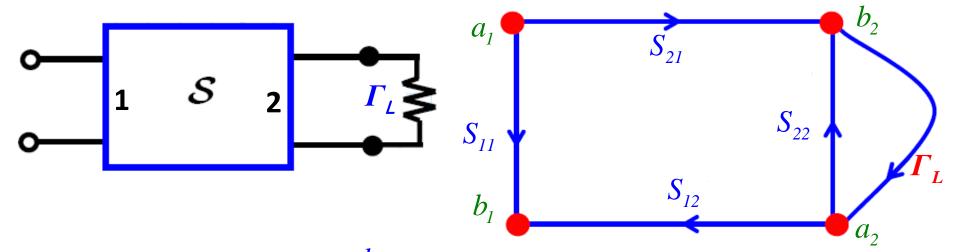
Rule 4 - Splitting Rule

If a node has one (and only one!) incoming branch, and one (or more) exiting branches, the incoming branch can be "split", and directly combined with each of the exiting branches.



Example-1

Consider the basic 2-port network, terminated with load $\Gamma_{\rm L}$:



determine the value:
$$\Gamma_1 = \frac{b_1}{a_1}$$

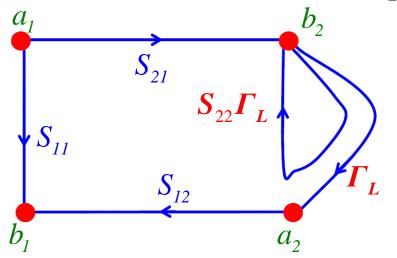
Solution:

- Isn't this simply S₁₁?
- Only if $\Gamma_L = 0$ (and in this situation it is not!)

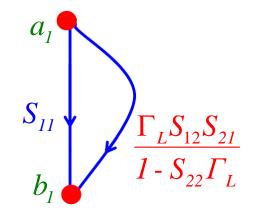
Example-1 (contd.)

let's decompose (simplify) the signal flow graph and find out!

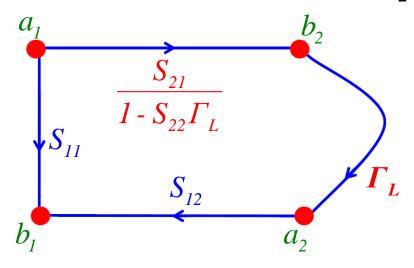
Step-1: splitting rule on node a₂



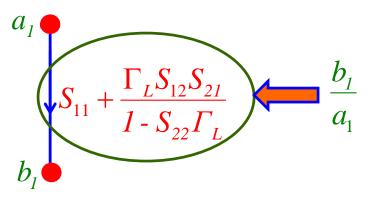
Step-3: series rule gives



Step-2: self-loop rule on node b₂

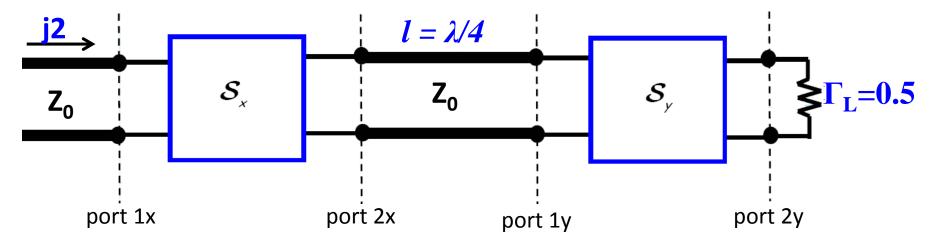


Step-4: parallel rule gives



Example – 2

Below is a **single**-port device (with **input** at port 1x) constructed with two two-port devices (S_x and S_y), a quarter wavelength transmission line, and a load impedance.



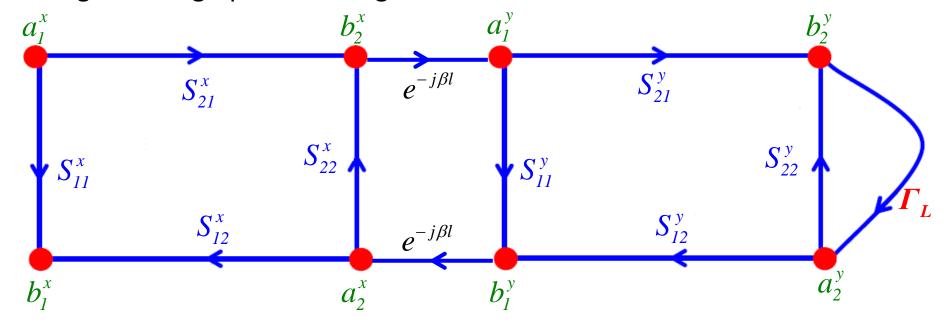
$$Z_0 = 50\Omega$$

$$S_x = \begin{bmatrix} 0.35 & 0.5 \\ 0.5 & 0 \end{bmatrix}$$

$$\mathbf{S}_{y} = \begin{bmatrix} 0 & 0.8 \\ 0.8 & 0.4 \end{bmatrix}$$

Draw the complete **signal flow graph** of this circuit, and then reduce the graph to determine: **a)** The total current through load Γ_L ; **b)** The power delivered to (i.e., absorbed by) port 1x.

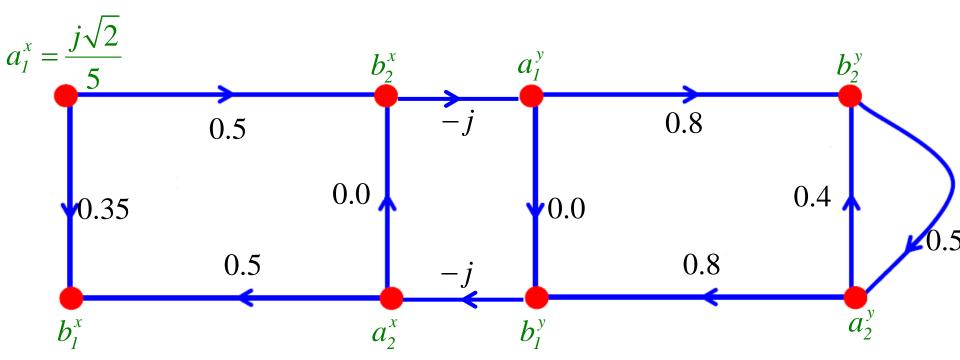
The signal flow graph describing this network is:



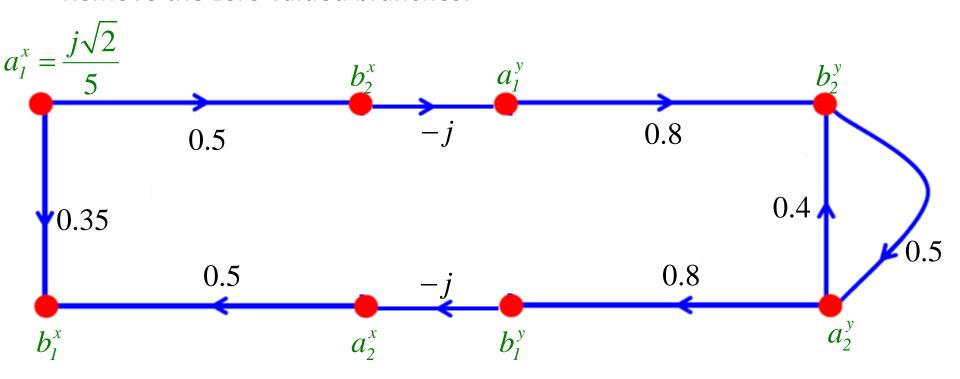
We know that the value of the wave **incident** on port 1 of device S_x is:

$$a_1^x = \frac{V_{1x}^+ (z_{1x} = z_{1xP})}{\sqrt{Z_0}} = \frac{j2}{\sqrt{50}} = \frac{j\sqrt{2}}{5}$$

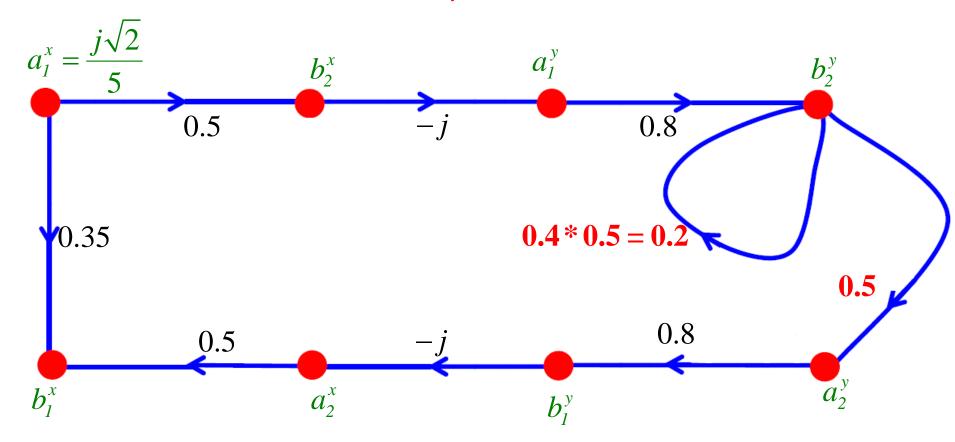
Let us place the given numeric values of branches on this SFG:



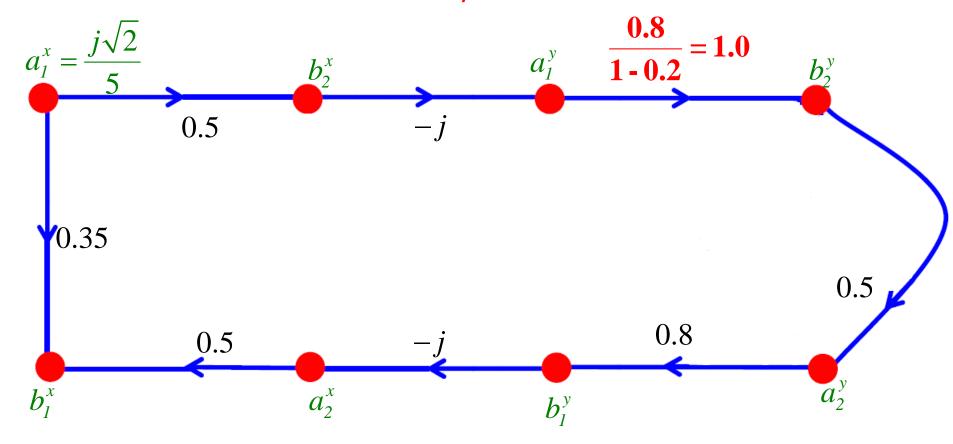
• Remove the zero valued branches:



Now apply "splitting" rule at node a2y



Then apply "self-loop" rule at node b_{2y}



let's use this simplified signal flow graph to find the solutions to our questions!

a) The total current through load $\Gamma_{\rm L}$

$$I_{L} = -I\left(z_{2y} = z_{2yP}\right) = -\frac{V_{2y}^{+}\left(z_{2y} = z_{2yP}\right) - V_{2y}^{-}\left(z_{2y} = z_{2yP}\right)}{Z_{0}}$$

$$\Rightarrow I_{L} = -\frac{a_{2y} - b_{2y}}{\sqrt{Z_{0}}} = \frac{b_{2y} - a_{2y}}{\sqrt{50}}$$

Thus, we need to determine the value of nodes a_{2v} and b_{2v}

Using the "series" rule on the SFG gives

$$a_{1x} = j\sqrt{2/5}$$

$$0.5* - j*1 = -j0.5$$

$$b_{2y}$$

$$b_{2y} = -j0.5* a_1^x = -j0.5* \frac{j\sqrt{2}}{5} = 0.1\sqrt{2}$$

$$a_{2y} = 0.5* b_{2y} = 0.05\sqrt{2}$$

$$0.5* - j*0.8 = -j0.4$$

$$0.5$$

Thus the total current through $\Gamma_{\rm L}$ is:

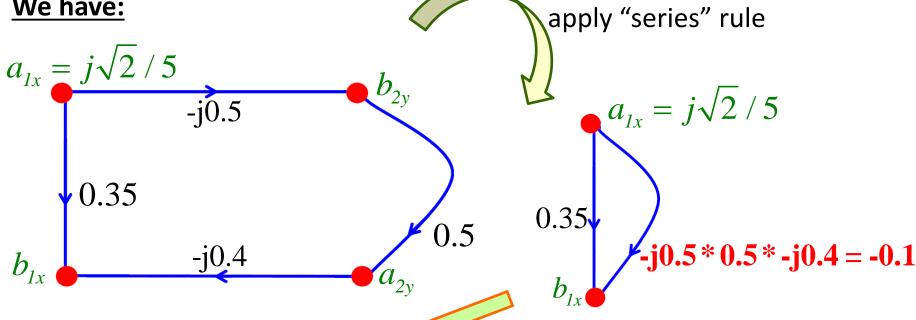
$$I_L = \frac{b_{2y} - a_{2y}}{\sqrt{50}} = \frac{(0.1 - 0.05)\sqrt{2}}{\sqrt{50}} = \frac{0.05}{5} = 10mA$$

b) The power delivered to (i.e., absorbed by) port 1x is:

$$P_{abs} = P^{+} - P^{-} = \frac{\left|V_{1x}^{+}(z_{1x} = z_{1xP})\right|^{2}}{2Z_{0}} - \frac{\left|V_{1x}^{-}(z_{1x} = z_{1xP})\right|^{2}}{2Z_{0}}$$

$$\Rightarrow P_{abs} = \frac{\left|a_{1x}\right|^2 - \left|b_{1x}\right|^2}{2}$$

Requires knowledge of nodes a_{1x} and b_{1x}



$$a_{1x} = j\sqrt{2}/5$$
0.35 - 0.1 = 0.25

apply "parallel" rule

Therefore:

$$b_{1x} = 0.25a_{1x} = (0.25 * j\sqrt{2} / 5) = j0.05\sqrt{2}$$

Therefore, the power delivered to (i.e., absorbed by) port 1x is:

$$\Rightarrow P_{abs} = \frac{\left| j\sqrt{2} / 5 \right|^2 - \left| j0.05\sqrt{2} \right|^2}{2} = \frac{0.08 - 0.005}{2} = 37.5 \text{mW}$$