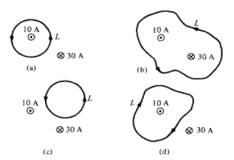
Ques 1. (a) For the boundary between two magnetic media, show that the boundary conditions on the magnetization vector are,

$$\frac{M_{1t}}{\chi_{m1}} - \frac{M_{2t}}{\chi_{m2}} = K$$
 and $\frac{\mu_1}{\chi_{m1}} m_{1n} = \frac{\mu_2}{\chi_{m2}} M_{2n}$

(b) If the boundary is not current free, show that, we obtain

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\mu_1}{\mu_2} \left[1 + \frac{K\mu_2}{B_2 \sin \theta_2} \right]$$

Ques 2. If μ_1 = 2 μ_0 for region 1($0 < \phi < \Pi$) and μ_2 = $5\mu_0$ for region 2 ($0 < \phi < 2$ Π) and B_2 = $10a_p + 15a_\phi - 20a_z$ mWb/m₂. Calculate: (a) B_1 (b) the energy densities in the two media.


Ques 3. A unit normal vector from region 2 (μ =2 μ 0) to region 1(μ = μ 0) is an21=(6ax+2ay-3az) /7. If H₁=10ax+ay+12az A/m and H₂=H_{2x}ax-5ay+4az A/m, determine (a) H_{2x}

- (b)The surface current density K on the interface
- (c)The angles B1 and B2 make with the normal to the interface.

Ques 4. If $H = y a_x - x a_y A/m$ on plane z = 0,

- (a) determine the current density and
- (b) verify Ampere's law by taking the circulation of H around the edge of the rectangle Z=0, 0 < x < 3,-1 < y < 4.

Ques 5. For the currents and closed paths of Figure, calculate the value of $\oint_t H dl$

Ques 6. A conductor of radius a carries a uniform current with $J = Jo \ a_z$. Show that the magnetic vector potential for $\rho > a$ is

$$\mathbf{A} = -\frac{1}{4} \,\mu_{\mathrm{o}} J_{\mathrm{o}} \rho^2 \mathbf{a}_z$$