TUTORIAL 6

Ques 1. For the current density $\mathrm{J}=10 \mathrm{zsin} 2 \phi$ a $\mathrm{A} / \mathrm{m} 2$, find the current through the cylindrical surface $\rho=2,1 \leq z \leq 5 \mathrm{~m}$.

Ques 2. (a) What is field intensity on the surface of each plate of capacitor in terms of ρ s (surface charge density), and ε (the permittivity of the dielectric filled in the capacitor)? Inside the capacitor?
(b) What is the force with which each plate of a parallel-plate capacitor attract the other in terms of $\rho s, \mathrm{~S}$ (plates area), and ε.
(c) In an interesting arrangement called electrometer, a balance is used to measure potential difference between the two plates as shown in Fig (bottom plane is fixed). Suppose a mass ' m ' is what sets equilibrium, prove that V1-V2 (the potential difference) is equal to $\left(2 \mathrm{mgd}^{2} / \mathrm{S} \varepsilon\right)^{1 / 2}$.

Ques 3. For the currents and closed paths of Figure, calculate the value of $\oint \mathrm{H} . \mathrm{dl}$

Ques 4. If Figure represents the cross sections of two spherical capacitors, determine their capacitances. Let $\mathrm{a}=1 \mathrm{~mm}, \mathrm{~b}=3 \mathrm{~mm}, \mathrm{c}=2 \mathrm{~mm}, \varepsilon \mathrm{r} 1=2.5$ and $\varepsilon \mathrm{r} 2=3.5$.

Ques 5. If $\mathrm{H}=\mathrm{y}$ ax -x ay A / m on plane $\mathrm{z}=0$,
(a) Determine the current density and
(b) Verify Ampere's law by taking the circulation of H around the edge of the rectangle $\mathrm{Z}=0$, $0<x<3,-1<y<4$.

Ques 6. Given that $\mathbf{J}=5 e^{-10^{\wedge} 4 t} / r \mathrm{a}_{\mathrm{r}} \mathrm{A} / \mathrm{m}^{2}$ at $\mathrm{t}=0.1 \mathrm{~ms}$, find: (a) the amount of current passing surface $r=2 m$, (b) the charge density ρv on that surface.

