TUTORIAL \# 2

1.) Charges $+Q$ and $+3 Q$ are separated by distance $2 m$. A third charge is located such that system is in equilibrium. Find the location and value of the charge in terms of Q.
2.) Determine total charge on a line $0<x<5$ if $\rho \mathrm{l}=12 x^{2} \mathrm{Mc} / \mathrm{m}$.
3.) Determine total charge within a sphere $r=4 m$ if $\rho v=10 /(r \sin \theta) \mathrm{C} / \mathrm{m}^{3}$
4.) A circular disk of radius a carries charge $\rho s=-\mathrm{C} / \mathrm{m}^{2}$. Calculate the potential at $(0,0, h)$.
5.) Plane $x+2 y=5$ carries charge $\rho_{s}=6 \mathrm{nC} / \mathrm{m} 2$. Determining E at $(-1,0,1)$.
6.) Given that $\mathrm{F}=x^{2} \mathrm{a}_{\mathrm{x}}-\mathrm{xz} \mathrm{a} \mathrm{a}_{\mathrm{y}}-y^{2} \mathrm{a}_{\mathrm{z}}$, calculate the circulation of F around the closed path shown in Figure (1).

Figure (1)
7.) If $H=(x-y) a_{x}+\left(x^{2}+z y\right) a_{y}+5 y z a_{z}$, evaluate $\int H . d l$ along the contour of Figure (3)

Figure (3)
8.) Let $\mathrm{A}=2 \mathrm{xy} \mathrm{a} \mathrm{a}_{\mathrm{x}}+\mathrm{xz} \mathrm{a} \mathrm{a}_{\mathrm{y}}-\mathrm{y} \mathrm{a}_{\mathrm{z}}$ Evaluate $\int A . d v$ over a rectangular region
$0 \leq x \leq 2,0 \leq y \leq 2,0 \leq z \leq 2$
9.) Determine the gradient of the following scalar fields:
a) $U=x^{2} y+x y z$
b) $\mathrm{V}=\rho z \sin \emptyset+z^{2} \cos 2 \emptyset+\rho^{2}$
10.) Determine the Laplacian of the scalar fields
a) $U=x^{2} y+x y z$
b) $\mathrm{V}=\rho z \sin \varnothing+z^{2} \cos 2 \emptyset+\rho^{2}$

