Quiz - 1

Fields and Waves (ECE230) - Winter 2015

Time : $\mathbf{3 0}$ minutes

Question-1 (1 mark): The spherical strip shown in the figure is a section of a sphere of radius 3 cm . Find the area of the strip.

Question-2 (1 mark): If $\vec{E}=r A \hat{a}_{r}$ in spherical coordinates.
(a) Calculate the flux of \vec{E} through a spherical surface of radius a, centered at the origin.
(b) Verify the Divergence Theorem by calculating the volume integral of the divergence of the field \vec{E} over the volume bounded by the surface of radius a.

Question-3 (1 mark): Determine the divergence of each of the following vectors and then evaluate them at the indicated points.
(a) $\vec{E}=3 x^{2} \hat{a}_{x}+2 z \hat{a}_{y}+x^{2} z \hat{a}_{z}$ at $(2,-2,0)$
(b) $\vec{E}=\left(\frac{a^{3} \cos \theta}{r^{2}}\right) \hat{a}_{r}-\left(\frac{a^{3} \sin \theta}{r^{2}}\right) \hat{a}_{\theta}$ at $(\mathrm{a} / 2,0, \pi)$

Question -4 (1 mark): Consider an infinite line charge parallel to the z-axis at $x=6, y=8$. Find \vec{E} at the general field point $P(x, y, z)$.

Question-5 (1 mark): If $V=\rho^{2} z \sin \phi$, calculate the energy within the region defined by $1<\rho<$ $4,-2<z<2,0<\phi<\frac{\pi}{3}$.

