<u>Home Assignment – 2</u>

- 1. Using MATLAB, find the divergence of the two-dimensional vector field $\vec{A} = e^{-(r/\alpha)^2} \vec{r}$, where $\vec{r} = x\hat{a}_x + y\hat{a}_y$.
- 2. Consider an electric dipole: using MATLAB, plot the equipotential contours and the electric field surrounding the charges.
- 3. Compare the analytical and numerical evaluation of the area under the curve defined by the function $y = x^2$ in the interval $0 \le x \le 4$.
- 4. Evaluate the potential at the point z = a due to a charge Q being distributed uniformly upon a square surface whose area is equal to a^2 if the number of subareas is equal to one and four. The center of the square is the z axis, which creates significant symmetry in the problem.
- 5. Plot the coefficient for the electric field as a function of distance z from a square that contains a uniform charge distribution of ρ_s . The z axis is at the center of the square.
- 6. Plot the potential in the x y plane in the region x > 0 due to a uniformly charged line that is 10 units long and is located at y = 0.