Home Assignment - 2

1. Using MATLAB, find the divergence of the two-dimensional vector field $\vec{A}=e^{-(r / \alpha)^{2}} \vec{r}$, where $\vec{r}=x \hat{a}_{x}+y \hat{a}_{y}$.
2. Consider an electric dipole: using MATLAB, plot the equipotential contours and the electric field surrounding the charges.
3. Compare the analytical and numerical evaluation of the area under the curve defined by the function $y=x^{2}$ in the interval $0 \leq x \leq 4$.
4. Evaluate the potential at the point $z=a$ due to a charge Q being distributed uniformly upon a square surface whose area is equal to a^{2} if the number of subareas is equal to one and four. The center of the square is the z-axis, which creates significant symmetry in the problem.
5. Plot the coefficient for the electric field as a function of distance z from a square that contains a uniform charge distribution of ρ_{s}. The z - axis is at the center of the square.
6. Plot the potential in the $x-y$ plane in the region $x>0$ due to a uniformly charged line that is 10 units long and is located at $y=0$.
