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• Boundary Conditions (contd.) 
• Electrostatic Boundary Value Problems 
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Example – 1: Boundary Conditions 

• Two slabs of dissimilar dielectric material share a common boundary, as 
shown below. The respective electric field is also shown.  

𝜀2 = 3ε0 

𝜀1 = 6ε0 

2 ˆ ˆ( ) 2 6x yE r a a 

1 1 1
ˆ ˆ( ) x x y yE r E a E a 

x 

y 

In each dielectric region, let’s determine (in terms of ε0): 
(1) the electric field,  (2) the electric flux density, (3) the bound volume 
charge density (i.e., the equivalent polarization charge density) within the 
dielectric, and (4) the bound surface charge density (i.e., the equivalent 
polarization charge density) at the dielectric interface 
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• Since we already know the electric field in the second region, let’s 
evaluate region 2 first. 

• We can easily determine the electric flux density within the region: 

2 22( ) ( )D r E r  2 0
ˆ ˆ( ) 3 2 6x yD r a a 

2 0 0
ˆ ˆ( ) 6 18x yD r a a   

• Likewise, the polarization vector within the region is: 

2 20 2( ) ( )eP r E r    2 0 2
ˆ ˆ( ) 1 2 6r x yP r a a   

  2 0
ˆ ˆ( ) 3 1 2 6x yP r a a    2 0 0

ˆ ˆ( ) 4 12x yP r a a   

Example – 1 (contd.) 
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Q: Why did we determine the polarization vector? It is not one of the 
quantities this problem asked for! 
A: True! But the problem did ask for the equivalent bound charge densities 
(both volume and surface) within the dielectric. We need to know 

polarization vector 𝑃(𝑟 ) to find this bound charge! 

• Since the polarization vector 𝑃(𝑟 ) is a constant (i.e., it has precisely the 
same magnitude and direction at every point within region 2), we find 

that the divergence of 𝑃(𝑟 ) is zero, and thus the volume bound charge 
density is zero within the region: 

22( ) . ( )vp r P r    2 0 0
ˆ ˆ( ) . 4 12vp x yr a a    

2( ) 0vp r 

• Recall the bound volume charge density is: ( ) . ( )vp r P r  

• and the bound surface charge density is: ˆ( ) ( ).sp nr P r a 

Example – 1 (contd.) 
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• However, we find that the surface bound charge density is not zero! 
• Note that the unit vector normal to the surface of the bottom dielectric 

slab is 𝑎 𝑛2=𝑎 𝑦 : 

x 

y 𝑎 𝑛=𝑎 𝑦 

• Since the polarization vector is constant, we know that its value at the 
dielectric interface is likewise equal to 4ε0𝑎 𝑥 + 12ε0𝑎 𝑦 . Thus, the 
equivalent polarization (i.e., bound) surface charge density on the top of 
region 2 (at the dielectric interface) is: 

22 2
ˆ( ) ( ).sp b b nr P r a  2 0( ) 12sp br   2 0 0

ˆ ˆ ˆ( ) 4 12 .sp b x y yr a a a   

Example – 1 (contd.) 
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• Now, let’s determine these same quantities for region 1 (i.e., the top 
dielectric slab). 

Q1: How the heck can we do this? We don’t know anything about the 
fields in region 1 ! 

A1: True! We don’t know 𝐸1(𝑟 ) or 𝐷1(𝑟 ) or even 𝑃1(𝑟 ). However, we 

know the next best thing—we know 𝐸2(𝑟 ) and 𝐷2(𝑟 )  and even 𝑃2(𝑟 )! 

Q2: Huh!?! 
A2: We can use boundary conditions to transfer our solutions from 
region 2 into region 1! 

Example – 1 (contd.) 
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• First, we note that at the dielectric interface, the vector components of 

the electric fields tangential to the interface are 𝐸1𝑡 𝑟 𝑏 = 𝐸1𝑥𝑎 𝑥 and 

𝐸2𝑡 𝑟 𝑏 = 2𝑎 𝑥: 

x 

y 
𝐸1𝑡 𝑟 𝑏 = 𝐸1𝑥𝑎 𝑥  

𝐸2𝑡 𝑟 𝑏 = 2𝑎 𝑥 

• Thus, applying the boundary condition 𝐸1𝑡 𝑟 𝑏 = 𝐸2𝑡 𝑟 𝑏 , we find: 

1
ˆ ˆ2x x xE a a

1 2xE 

Example – 1 (contd.) 



Indraprastha Institute of 

Information Technology Delhi ECE230 

• Likewise, we note that at the dielectric interface, the vector components 

of the electric fields normal to the interface are 𝐸1𝑛 𝑟 𝑏 = 𝐸1𝑦𝑎 𝑦 and 

𝐸2𝑛 𝑟 𝑏 = 6𝑎 𝑦: 

x 

y 𝐸1𝑛 𝑟 𝑏 = 𝐸1𝑦𝑎 𝑦  

𝐸2𝑛 𝑟 𝑏 = 6𝑎 𝑦 

• Here, we can apply a second boundary condition, ε1𝐸1𝑛 𝑟 𝑏 = ε2𝐸2𝑛 𝑟 𝑏 : 

0 1 0
ˆ ˆ6 * 3 *6y y yE a a  1

ˆ ˆ3y y yE a a 1 3yE 

• Thus, the electric field in the top region is: 

1 1 1
ˆ ˆ( ) x x y yE r E a E a  1 ˆ ˆ( ) 2 3x yE r a a  

Example – 1 (contd.) 
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• We can then find the electric flux density by multiplying by the 
permittivity of region 1 ε1 = 6ε0 . 

1 11( ) ( )D r E r 1 0 0
ˆ ˆ( ) 12 18x yD r a a   

• Note we could have solved this problem another way! 

• Instead of applying boundary conditions to 𝐸2(𝑟 ), we could have applied 

them to electric flux density 𝐷2(𝑟 ): 

2 0 0
ˆ ˆ( ) 6 18x yD r a a  

• We know that the electric flux density within region 1 must be constant, 
i.e.: 

1 1 1
ˆ ˆ( ) x x y yD r D a D a 

Example – 1 (contd.) 
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• The vector fields 𝐷1(𝑟 ) and 𝐷2(𝑟 ) at the interface are related by the 
boundary conditions: 

1 2

1 2

( ) ( )t tb bD r D r

 


1 2( ) ( )n nb bD r D r

• After simplification, we find that the electric flux density in region 1 is: 

1 0 0
ˆ ˆ( ) 12 18x yD r a a   Precisely the same result 

as before! 

• We can then find the electric field in region 1 by dividing the obtained 
electric flux density by the dielectric permittivity: 

1
1

1

( )
ˆ ˆ( ) 2 3x y

D r
E r a a


   the same result as 

before! 

Example – 1 (contd.) 
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• Now, finishing this problem, we need to find the polarization vector 𝑃1(𝑟 ): 

 1 10 1( ) 1 ( )rP r E r     1 0
ˆ ˆ( ) 6 1 2 3x yP r a a  

1 0 0
ˆ ˆ( ) 10 15x yP r a a   

• Thus, the volume charge density of bound charge is again zero: 

11( ) . ( )vp r P r    1 0 0
ˆ ˆ( ) . 10 15vp x yr a a    

1( ) 0vp r 

However, we again find that the surface bound charge 
density is not zero! 

Example – 1 (contd.) 
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• Note that the unit vector normal to the bottom surface of the top 
dielectric slab points downward, i.e., 𝑎 𝑛1 = −𝑎 𝑦: 

x 

y 

𝑎 𝑛1 = −𝑎 𝑦 

• Since the polarization vector is constant, we know that its value at the 
dielectric interface is likewise equal to: 

1 0 0
ˆ ˆ( ) 10 15x yP r a a  

• Thus, the equivalent polarization (i.e., bound) surface charge density on 
the bottom of region 1 (at the dielectric interface) is: 

11 1
ˆ( ) ( ).sp b b nr P r a  1 0( ) 15sp br      1 0 0

ˆ ˆ ˆ( ) 10 15 .sp b x y yr a a a    

• Now, we can determine the net surface charge density of bound charge 
that is lying on the dielectric interface: 

1 2( ) ( ) ( )sp b sp b sp br r r    0 0 0( ) 15 12 3sp br       

Example – 1 (contd.) 
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Example – 2  
• In the following figure, the x-y plane is a charge free boundary separating 

two  dielectric media with permittivities ε𝑟1 and ε𝑟2. If the electric field in 

medium 1 is 𝐸1 = 𝐸1𝑥𝑎 𝑥 + 𝐸1𝑦𝑎 𝑦 + 𝐸1𝑧𝑎 𝑧, find (a) the electric field 𝐸2 in 

medium 2, and (b) the angles θ1 and θ2. 

𝐸1 

𝐸2 

𝐸1𝑡 
𝐸1𝑛 

𝐸2𝑡 

𝐸2𝑛 

Let,  

𝐸2 = 𝐸2𝑥𝑎 𝑥 + 𝐸2𝑦𝑎 𝑦 + 𝐸2𝑧𝑎 𝑧 

• Here, the normal to the boundary 
is 𝑎 𝑧  

• Therefore, the x and y components 
are tangential and z components 
are normal to the boundary  

• At the charge free interface, the 

tangential components of 𝐸 and 

normal component of 𝐷  are 
continuous.  
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Example – 2 (contd.)  

• Therefore 

𝐸2𝑥 = 𝐸1𝑥 𝐸2𝑦 = 𝐸1𝑦 𝐷2𝑧 = 𝐷1𝑧 

Tangential Components 
Normal 

Component 

ε2𝐸2𝑧 = ε1𝐸1𝑧 

• Thus,  

𝐸2 = 𝐸2𝑥𝑎 𝑥 + 𝐸2𝑦𝑎 𝑦 + 𝐸2𝑧𝑎 𝑧 = 𝐸1𝑥𝑎 𝑥 + 𝐸1𝑦𝑎 𝑦 +
ε1

ε2
 
𝐸1𝑧𝑎 𝑧 
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Example – 2 (contd.)  

• The tangential components of 𝐸1 and 𝐸2 are:  

2 2

1 1 1t x yE E E  2 2

2 2 2t x yE E E 

• Therefore the angles θ1 and θ2 
can be written as:  

𝐸1 

𝐸2 

𝐸1𝑡 
𝐸1𝑛 

𝐸2𝑡 

𝐸2𝑛 

1
1

1

tan t

n

E

E
 

2 2

1 1

1

1

tan
x y

z

E E

E





2
2

2

tan t

n

E

E
 

2 2

1 1

2

1
1

2

tan
x y

z

E E

E









 
 
 

2 2

2 1 1t x yE E E 

• The two angles are related as: 

2 2

1 1

tan

tan
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Example – 3 
• Find 𝐸1 

in the following figure, if 𝐸2 = 2𝑎 𝑥 − 3𝑎 𝑦 + 3𝑎 𝑧 
 (V/m), ε1 = 2ε0, 

ε2 = 8ε0 and the boundary is charge free.  

𝐸1 

𝐸2 

𝐸1𝑡 
𝐸1𝑛 

𝐸2𝑡 

𝐸2𝑛 

• Given that the x–y plane is the 
boundary between the two 
media, the x- and y-components 

of 𝐸2  are parallel to the 
boundary, and therefore are the 
same across the two sides of the 
boundary. Thus, 

𝐸1𝑥 = 𝐸2𝑥 = 2  𝐸1𝑦 = 𝐸2𝑦 = −3  

For the z-component 

ε1𝐸1𝑧 = ε2𝐸2𝑧 0
1 2

0

8
12

2
z zE E




 

• Therefore: 𝐸1 = 𝐸1𝑥𝑎 𝑥 + 𝐸1𝑦𝑎 𝑦 + 𝐸1𝑧𝑎 𝑧 𝐸1 = 2𝑎 𝑥 − 3𝑎 𝑦 + 12𝑎 𝑧 V/m 
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Example – 4 
• Repeat example – 3 for a boundary with surface charge density 

ρ𝑠 = 3.54 × 10−11 𝐶/𝑚2. 

𝐸1𝑥 = 2  𝐸1𝑦 = −3  From example-2: 

For z-component: 
1 1 2 2z z sE E   

2 2
1

1

s z
z

E
E

 




 

11

0
1

0

3.54 10 8 3

2
zE





  
  1 14zE 

• Therefore: 𝐸1 = 𝐸1𝑥𝑎 𝑥 + 𝐸1𝑦𝑎 𝑦 + 𝐸1𝑧𝑎 𝑧 

𝐸1 = 2𝑎 𝑥 − 3𝑎 𝑦 + 14𝑎 𝑧 V/m 
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Example – 5 
• Given that 𝐸1 = 10𝑎 𝑥 −

6𝑎 𝑦 + 12𝑎 𝑧  V/m in following 

figure. Find (a) 𝑃1, (b) 𝐸2 and 

the angle 𝐸2 makes with the y-
axis, (c) the energy density in 
each region.  

1 ˆ ˆ ˆ( ) 0.1768 0.1061 0.2122x y zP r a a a   𝑛𝐶
𝑚2  

𝐸2 = 10𝑎 𝑥 − 4𝑎 𝑦 + 12𝑎 𝑧 V/m 

𝜃2 = 75.64° 

𝑊𝐸1 = 3.7136 
𝑛𝐽

𝑚3  𝑊𝐸2 = 5.1725 
𝑛𝐽

𝑚3  
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• A silver-coated sphere of radius 5cm carries a total charge of 12nC 

uniformly distributed on its surface in free space. Calculate (a) |𝐷| on the 

surface of the sphere, (b) 𝐷 external to the sphere, (c) the total energy 
stored in the field.  

Example – 6 

381.97D  𝑛𝐶
𝑚2  

2

0.955
ˆ

rD a
r

 𝑛𝐶
𝑚2  

𝑊 = 12.96 𝜇𝐽 
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Example – 7 
• A dielectric interface is defined by 4𝑥 + 3𝑦 = 10𝑚. The region including 

the origin is free space, where 𝐷1 = 2𝑎 𝑥 − 4𝑎 𝑦 + 6.5𝑎 𝑧  nC/m2. In the 

other region, 𝜀𝑟2 = 2.5. Find 𝐷2 and the angle θ2 that 𝐷2 makes with the 
normal.  

𝜃2 = −86.74° 

𝐷2 = 5.96𝑎 𝑥 − 9.28𝑎 𝑦 + 16.25𝑎 𝑧 
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Example – 8 

• Region 𝑦 < 0 consists of a perfect conductor while region 𝑦 > 0 is a 
dielectric medium ε1𝑟 = 2  as shown below. If there is a surface charge of  

2 𝑛𝐶/𝑚2 on the conductor , determine 𝐸 and 𝐷 at:  

(a) 𝐴(3,−2, 2) (b) 𝐵(−4, 1, 5) 
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Example – 8 (contd.) 

(a) Point 𝐴(3,−2, 2) is in the conductor since 𝑦 = −2 < 0 at A. Hence: 

𝐸 = 0 = 𝐷 

(b) Point 𝐵(−4, 1, 5) is in the dielectric medium since 𝑦 = 1 > 0 at B. Hence: 

𝐷𝑛 = ρ𝑠 = 2 𝑛𝐶/𝑚2 

Therefore: 
ˆ2 yD a nC/m2 

0 1r

D
E

 
 V/m ˆ113.1 yE a V/m 
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Example – 9 
• The plane 𝑧 = 4 is the interface between two dielectrics. The dielectric 

region 𝑧 > 4 has dielectric constant of 5 and 𝐸 = 6𝑎 𝑥 − 12𝑎 𝑦 + 8𝑎 𝑧 
 

(V/m). If the dielectric constant is 2 in region 𝑧 < 4, find the electric field 
intensity in that region.   

𝜀 = 5 

𝜀 = 2 

𝐸 = 6𝑎 𝑥 − 12𝑎 𝑦 + 8𝑎 𝑧 
 

𝐸 =? ? 

y 

z 

x 

region 1 

region 2 

𝐸1𝑛 = 𝐸1𝑧 = 8𝑎 𝑧  

𝐸1𝑡 = 6𝑎 𝑥 − 12𝑎 𝑦 = 𝐸2𝑡  

1
2 1

2

n nE E





2

5
ˆ ˆ8 20

2
n z zE a a  

2 2 2n tE E E   2 ˆ ˆ ˆ6 12 20x y zE a a a   

z=4 
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Until now: we used Coulomb’s law and Gauss’s law to determine 𝐸 

when the charge distribution is known or 𝐸 = −∇V when the 
potential is known throughout the region.  

Now: we will consider practical electrostatics problems where only 
electrostatic conditions (charge and potential) at some boundaries 

are known and it is desired to find 𝐸  and V throughout the region. 
Such problems are usually solved using Poisson’s or Laplace’s 

equation or “Method of Images” 
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Poisson’s and Laplace’s Equation 

• From Gauss’s Law:  . vE



 

E V • We have:  
 . vV




   

2 2 2
2

2 2 2

vV V V
V

x y z





  
     

  
(Poisson’s Equation) 

• If the medium under consideration contains no charge then: 2 0V 

Laplace’s Equations 

These formulations are extremely useful for determining the electrostatic 
potential V in regions with boundaries on which V is known, such as the 

regions between the plates of a capacitor with specified voltage difference 
across it.  
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Poisson’s and Laplace’s Equation (contd.) 

2 2
2

2 2

1 1

2

vV V V
V

z




     

    
      

    

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

vV V V
V r

r r r r r




     

       
        

       

• The corresponding Laplace’s equations are: 

2 2 2
2

2 2 2
0

V V V
V

x y z

  
    

  

2 2
2

2 2

1 1
0

2

V V V
V

z


    

    
     

    

2
2 2

2 2 2 2 2

1 1 1
sin 0

sin sin

V V V
V r

r r r r r
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Uniqueness Theorem 

• One can use any of the available methods (analytical, graphical, numerical, 
experimental etc.) to solve Laplace‘s or Poisson’s equations. 

• If the solution exits then that solution is unique irrespective of the 
method used to determine them. 

• This is known as Uniqueness Theorem.  
• Proof of this theorem – through contradiction [follow your text book] 

• Before we begin to solve Boundary-Value-Problems, we should bear in 
mind the three things that uniquely describe a problem:  

1. The appropriate differential equation (Laplace’s or Poisson’s equation) 
2. The solution region 
3. The prescribed boundary conditions  
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Procedure for Solving Poisson’s or Laplace’s Equations 
1. Solve Laplace’s (if ρ𝑣 = 0) or Poisson’s (if ρ𝑣 ≠ 0) equation  using either 

(a) direct integration when V is a function of one variable or (b) 
separation of variables if V is a function of more than one variable. The 
solution at this point is not unique but is expressed in terms of unknown 
integration constants to be determined. 

2. Apply the boundary conditions to determine the unique solution for V. 
Imposing the given boundary conditions makes the solution unique.  

3. Having obtained V, find 𝐸 using 𝐸 = −∇V, 𝐷 from 𝐷 = ε𝐸, and 𝐽  from 

𝐽 = σ𝐸.  
4. If required, find the charge Q induced on a conductor using 𝑄 =  ρ𝑠 𝑑𝑆, 

where ρ𝑠 = 𝐷𝑛 and 𝐷𝑛 is the component of 𝐷 normal to the conductor. 
If necessary, the capacitance of two conductors can be found using 

𝐶 = 𝑄/𝑉 or the resistance of an object can be found using 𝑅 =
𝑉

𝐼
, where 

𝐼 =  𝐽 . 𝑑𝑆. 
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Example – 10: Dielectric Filled Parallel Plates 

Q: What electric potential field 𝑉(𝑟 ), electric field 𝐸(𝑟 ) and charge density 
ρ𝑠(𝑟 ) is produced by this situation? 

• Consider two infinite, parallel conducting plates, spaced a distance d 
apart. The region between the plates is filled with a dielectric ε. Say a 
voltage V0 is placed across these plates. 

z 

z=0 

z=-d 
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Example – 10 (contd.) 

A: We must solve a boundary value problem! We must find solutions that: 

a) Satisfy the differential equations of electrostatics (e.g., Poisson’s, 
Laplace’s,  Gauss’s). 

b) Satisfy the electrostatic boundary conditions. 

Q: Yikes! Where do we even start ? 

A: We might start with the electric potential field 𝑉(𝑟 ), since it is a scalar 
field. 

a) The electric potential function must satisfy Poisson’s equation: 

2 ( )
( ) v r

V r



  

b) It must also satisfy the boundary conditions: 

𝑉 𝑧 = −𝑑 = 𝑉0                                          𝑉 𝑧 = 0 = 0  
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• Consider first the dielectric region (−𝑑 < 𝑧 < 0). Since the region is a 
dielectric, there is no free charge, and: 

( ) 0v r 

• Therefore, Poisson’s equation reduces to Laplace’s equation: 

2 ( ) 0V r 

• This problem is greatly simplified, as it is evident that the solution 𝑉(𝑟 ) is 
independent of coordinates x and y. In other words, the electric potential 
field will be a function of coordinate z only: 

( ) ( )V r V z

• This make the problem much easier! Laplace’s equation becomes: 

2 ( ) 0V r  2 ( ) 0V z 
2

2

( )
0

V z

z






Example – 10 (contd.) 
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• Integrating both sides of Laplace’s equation, we get: 

 
2

2

( )
0

V z
dz dz

z

 
 

 
  1

( )V z
C

z






• And integrating again we find: 

 1

( )V z
dz C dz

z

 
 

 
  1 2( )V z C z C 

• We find that the equation 𝑉 𝑧 = 𝐶1𝑧 + 𝐶2 will satisfy Laplace’s equation 
(try it!). We must now apply the boundary conditions to determine the 
value of constants C1 and C2. 

1 2( 0) (0) 0V z C C   

Example – 10 (contd.) 

1 2 0( )V z d C d C V     

• We know that the value of the electrostatic potential at every point on 
the top plate (𝑧 = −𝑑) is 𝑉 −𝑑 = 𝑉0, while the electric potential on the 
bottom plate (𝑧 = 0) is zero 𝑉 0 = 0 . Therefore: 
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• Two equations and two unknowns (C1 and C2)! 

𝐶1 = −
𝑉0

𝑑
 

• and therefore, the electric potential field within the dielectric is found to 
be: 

1 2( )V z C z C  0( )
V

V r z
d

 

• Before we proceed, let’s do a sanity check! 
• In other words, let’s evaluate our answer at 𝑧 = 0 and 𝑧 = −𝑑, to make 

sure our result is correct: 

0
0( ) ( )

V
V z d d V

d
     

0( 0) (0) 0
V

V z
d

   

Example – 10 (contd.) 

𝐶2 = 0 

• Solving for C1 and C2 we get: 
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• Now, we can find the electric field within the dielectric by taking the 
gradient of our result: 

( ) ( )E r V r  0 ˆ( ) z

V
E r a

d
 −𝑑 ≤ 𝑧 ≤ 0 

• Finally, we need to determine the charge density that actually created 
these fields! 

Q: Charge density !?! I thought that we already determined that the charge 
density ρ𝑣(𝑟 ) is equal to zero? 

A: We know that the free charge density within the dielectric is zero—but 
there must be charge somewhere, otherwise there would be no fields! 

• And thus we can easily determine the electric flux density by multiplying 
by the dielectric constant of the material: 

0 ˆ( ) ( ) z

V
D r E r a

d
   −𝑑 ≤ 𝑧 ≤ 0 

Example – 10 (contd.) 
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• Recall that we found that at a conductor/dielectric interface, the surface 
charge density on the conductor is related to the electric flux density in 
the dielectric as: 

ˆ( ). ( )n n sD D r a r 

• First, we find that the electric flux density on the bottom surface of the top 
conductor (i.e., at 𝑧 = −𝑑) is: 

0 0ˆ ˆ( ) | |z d z z d z

V V
D r a a

d d
  

 
  
 

• For every point on bottom surface of the top conductor, we find that the 
unit vector normal to the conductor is: 

𝑎 𝑛 = 𝑎 𝑧 

Example – 10 (contd.) 
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• Therefore, we find that the surface charge density on the bottom surface 
of the top conductor is: 

0ˆ ˆ ˆ( ) ( ). | .s n z d z z

V
r D r a a a

d
    0( )s

V
r

d
   (𝑧 = −𝑑) 

• Therefore, evaluating the electric flux density on the top surface of the 
bottom conductor (i.e., 𝑧 = 0), we find: 

0
0

ˆ ˆ ˆ( ) ( ). | .( )s n z z z

V
r D r a a a

d
     0( )s

V
r

d


 


  (𝑧 = 0) 

• Likewise, we find the unit vector normal to the top surface of the bottom 
conductor is (do you see why): 

𝑎 𝑛 = −𝑎 𝑧 

Example – 10 (contd.) 
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• We should note several things about these solutions: 

( ) 0E r 1) 

. ( ) 0D r  2 ( ) 0V r 2) and 

3) 𝐷(𝑟 ) and 𝐸(𝑟 ) are normal to the surface of the conductor (i.e., their 
tangential components equal zero!  

4) The electric field is precisely the same as calculated earlier. i.e.,  

0( ) ( )
ˆ ˆ ˆ( )

2 2

s s
z z z

r r V
E r a a a

d

 

 
    (−𝑑 < 𝑧 < 0) 

Example – 10 (contd.) 



Indraprastha Institute of 

Information Technology Delhi ECE230 

• In other words, the fields 𝐸(𝑟 ), 𝐷(𝑟 ), and 𝑉(𝑟 ) are attributable to charge 
densities 𝜌𝑠+(𝑟 ) and 𝜌𝑠−(𝑟 ). 

z 

z=0 

z=-d 

Example – 10 (contd.) 
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• Consider now a problem similar to the previous example (i.e., dielectric 
filled parallel plates), with the exception that the space between the 
infinite, conducting parallel plates is filled with free charge, with a density: 

0( )v r z   (−𝑑 < 𝑧 < 0)  

z 

z=0 

z=-d 

Example – 11 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Q: How do we determine the fields within the parallel plates for this 
problem? 
A: Same as before! However, since the charge density between the plates is 
not equal to zero, we recognize that the electric potential field must satisfy 
Poisson’s equation: 

2

0

( )
( ) v r

V r





 

• For the specific charge density ρ𝑣 𝑟 = −𝑧ε0: 2

0

( )
( ) v r

V r z





  

• Since both the charge density and the plate geometry are independent of 
coordinates x and y, we know the electric potential field will be a function 
of coordinate z only (i.e., 𝑉 𝑟 = 𝑉(𝑧)). 

Example – 11 (contd.) 

2
2

2

( )
( )

V z
V r z

z


  


• Therefore, Poisson’s equation becomes: 
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• We can solve this differential equation by first integrating both sides: 

 
2

2

( )V z
dz z dz

z

 
 

 
 

2

1

( )

2

V z z
C

z


 



• And integrating again we find: 

2

1

( )

2

V r z
dz C dz

z

  
   

   
 

3

1 2( )
6

z
V r C z C  

• Note that this expression for 𝑉(𝑟 ) satisfies Poisson’s equation for this 
case. The question remains, however: what are the values of constants C1 
and C2? 

• We find them in the same manner as before—boundary conditions! 

Example – 11 (contd.) 
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• Note the boundary conditions for this problem are: 

0( )V z d V   ( 0) 0V z  

• The electric potential field between the two plates is therefore: 
3

0( )
6 6

z V d
V r z

d

 
   

 
(−𝑑 < 𝑧 < 0)  

• It is evident that C2 = 0, therefore constant C1 is: 
2

0
1

6

V d
C

d

 
   

 

 
 

3

1 2

0
( 0) 0 0

6
V z C C    

• Therefore, we can construct two equations with two unknowns: 

 
 

3

0 1 2( )
6

d
V z d V C d C


      

Example – 10 (contd.) 
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• Performing our sanity check, we find: 

 
 

3

0( )
6 6

d V d
V z d d

d

  
      

 

and 
 

 
3

0
0

( 0) 0
6 6

V d
V z

d

 
    

 

3 3

0 0( )
6 6

d d
V z d V V


     

( 0) 0V z  

From this result, we can determine the electric field 𝐸(𝑟 ), the electric 

flux density 𝐷(𝑟 ), and the surface charge density ρ𝑠(𝑟 ), as before. 

Note, however, that the permittivity of the material between the plates 
is ε0, as the “dielectric” between the plates is free space. 

Example – 11 (contd.) 


