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• Kirchoff’s Voltage Law  
• Joule’s Law  
• Polarization Vector 
• Continuity Equation and Relaxation Time  
• Electrostatic Boundary Conditions 
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Kirchoff’s Voltage Law 

• Consider a simple electrical circuit: 
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We find that if the voltage source is 
on (i.e., 𝑉 ≠ 0), there will be electric 
potential differences (i.e., voltage) 
between different points of the 
circuit. This can only be true if 
electric fields are present! 

The electric field in this circuit will 
“look” something like this: 
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Kirchoff’s Voltage Law (contd.) 
• So, instead of using circuit theory, let’s use our new electrostatics 

knowledge to analyze this circuit. 

• First, consider a contour C1 that follows the circuit path. 
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• Using this path, let’s evaluate the 
contour integral: 

1

( ).
C

E r dl

• This is most easily done by breaking the 
contour C1 into six sections: section 1 
extends from point a to point b, section 
2 extends from point b to point c, etc. 
Thus, the integral becomes: 
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Kirchoff’s Voltage Law (contd.) 

• Let’s evaluate each term individually: 

Section 1 (a to b) 
In this section, the contour follows the wire from the 
voltage source to the first resistor. We know that the 
electric field in a perfect conductor is zero, and 
likewise in a good conductor it is very small. 
Assuming the wire is in fact made of a good 
conductor (e.g. copper), we can approximate the 
electric field within the wire (and thus at every point 

along section 1) as zero (i.e., 𝐸 𝑟 = 0). Therefore, 
this first integral equals zero! 

This of course makes sense! We know that the electric potential 
difference across a wire is zero volts. 
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Kirchoff’s Voltage Law (contd.) 
Section 2 (b to c) 

Section 3 (c to d) 

In this section, the contour moves through the first 
resistor. The contour integral along this section therefore 
allows us to determine the electric potential difference 
across this resistor. Let’s denote this potential difference 
as V1: 

1( ).

c

b c

b

E r dl V V V  

Just like section 1, the contour follows a wire, and thus 
the electric field long this section of the contour is zero, 
as is the potential difference between point c and point d. 
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Kirchoff’s Voltage Law (contd.) 

Section 4 (d to e) 

Section 5 (e to f) 

Just like section 2, the contour moves through a resistor. 
The contour integral for this section is thus equal to the 
potential difference across this second resistor, which we 
denote as V2: 

2( ).

e

d e

d

E r dl V V V  

Again, the contour follows a conducting wire—and again, 
the electric field along the contour and the potential 
difference across it are both zero: 
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Kirchoff’s Voltage Law (contd.) 

Section 6 (f to a) 

• Whew! Now let’s combine these results to determine the contour integral 
for the entire contour C1. 

This final section of contour C1 extends through the 
voltage source, thus the contour integral of this section 
provides the electric potential difference between the 
two terminals of the this voltage source (i.e., Vf – Va). By 
definition, the potential difference between points a and 
f is a value of V volts (i.e., Va−Vf = V). Therefore, we find 
that the contour integral of section 6 is: 

 ( ).

a

f a a f
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E r dl V V V V V      

1

1 2( ). 0 0 0
C

E r dl V V V     
1

1 2( ).
C

E r dl V V V  



Indraprastha Institute of 

Information Technology Delhi ECE230 

Kirchoff’s Voltage Law (contd.) 

Q: Wait; I’ve forgotten, Why 
are we evaluating these 
contour integrals? 

A: Remember, since the electric field is 
static, we also know that integral around 
any closed contour is zero. Thus, we can 
conclude that: 

1

1 20 ( ).
C

E r dl V V V   

• In other words, we find by performing an electromagnetic analysis of 
the circuit, the voltages across each circuit element are related as: 

1 2 0V V V  
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Kirchoff’s Voltage Law (contd.) 

Q: You have wasted my time! Using 
only Kirchoff’s Voltage Law (KVL), I 
arrived at precisely the same result 
𝑉1 + 𝑉2 − 𝑉 = 0 . I think the 

above equation is true because of 
KVL, not because of your fancy 
electromagnetic theory! 

A: It is true that the result we obtained by integrating the electric field 
around the circuit contour is likewise apparent from KVL. However, this 
result is still attributable to electrostatic physics, because KVL is a direct 
result of electrostatics! 
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Kirchoff’s Voltage Law (contd.) 

where 𝑉𝑛 are the electric potential differences across each element of 
a circuit “loop” (i.e., closed contour). 

Gustav Robert Kirchhoff (1824-1887), German 
physicist, announced the laws that allow calculation 
of the currents, voltages, and resistances of 
electrical networks in 1845, when he was only 
twenty-one! His other work established the 
technique of spectrum analysis that he applied to 
determine the composition of the Sun. 

• The electrostatic equation: 
1

( ). 0
C

E r dl 

when applied to the closed contour of any circuit, results in Kirchoff’s 
Voltage Law, i.e.: 

0n

n

V 
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Joule’s Law  

Q: Say instead of one charge Q, we have a steady stream of charges (i.e., 
electric current) flowing along contour C? 
A: We would need to determine the rate of work per unit time, i.e., the 
power applied by the field to the current. 

• Recall that the work done on charge Q by an electric 
field in moving the charge along some contour C is: 

( ).
C

W Q E r dl 

• Recall also that the time derivative of work is power! 

( ).
C

dW d
P Q E r dl

dt dt

 
   

 


• But look! The contour integral we know is 
equal to the potential difference V between 
either end of the contour. Therefore: 

( ).
C

P I E r dl IV 

The power delivered to charges by the field is equal to the current “I” flowing along 
the contour, times the potential difference (i.e., voltage V ) across the contour. 

Look familiar!? 

( ). ( ).
C C

dQ
P E r dl I E r dl

dt
  
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Joule’s Law (contd.) 

• Consider now the power delivered in some volume v, say the volume of a 
resistor. Recall the electric field has units of volts/m, and the current 
density has units of amps/m2. 

• Integrating power density over some volume v gives the total power 
delivered by the field within that volume: 

2 21
( ). ( ) ( ) ( ) ( )

( )
v v v

P E r J r dv r E r dv J r dv
r




     [Watt] 

2 3
( ). ( )

V A Watt
E r J r

m m m

     
      

     
Power Density 

• We find that the dot product of the electric field and the current density is 
a scalar value with units of Watts/m3. We call this scalar value the power 
density: 
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James Prescott Joule (1818-1889), born into a well-
to-do family prominent in the brewery industry, 
studied at Manchester under Dalton. At age twenty-
one he published the "I-squared-R" law which bears 
his name. Two years later, he published the first 
determination of the mechanical equivalent of heat. 
He became a collaborator with Thomson and they 
discovered that the temperature of an expanding gas 
falls. The "Joule-Thomson effect" was the basis for 
the large refrigeration plants constructed in the 19th 
century (but not used by the British brewery 
industry). Joule was a patient, methodical and 
devoted scientist; it became known that he had 
taken a thermometer with him on his honeymoon 
and spent time attempting to measure water 
temperature differences at the tops and bottoms of 
waterfalls. 
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Recall that if a dielectric material is immersed in an 
electric field, each atom/molecule in the material will 

form an electric dipole! 
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The Polarization Vector 

-  +  
𝑝  

𝐸(𝑟 ) 

• Recall that in dielectric materials (i.e., insulators), the charges are bound. 

As a result, atoms/molecules form electric dipoles when an electric 
field is present! 
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The Polarization Vector (contd.) 

𝐸(𝑟 ) 

• Note that even for some small volume Δv, there are many 
atoms/molecules present; therefore there will be many electric dipoles. 

• We therefore define an average dipole moment, per unit volume, called 

the Polarization Vector 𝑃(𝑟 ). 

2

_
( )

_

n
p dipole moment C

P r
v unit volume m

 
 

  


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The Polarization Vector (contd.) 

Q: How are vector fields 𝑃(𝑟 ) and 𝐸(𝑟 ) related?? 

Electric susceptibility is a material parameter indicating the 
“stretchability” of the dipoles. 

2

_
( )

_

n
p dipole moment C

P r
v unit volume m

 
 

  



𝑝𝑛 is one of N dipole moments in volume Δv, centered at position 𝑟 . Note 
the polarization vector is a vector field. As a result, the direction and 

magnitude of the Polarization vector can change as function of position 
(i.e., a function of 𝑟  ). 

0( ) ( ) ( )eP r r E r 

A: Recall that the direction of each dipole moment is the same as the 

polarizing electric field. Thus 𝑃(𝑟 ) and 𝐸(𝑟 ) have the same direction. Their 
magnitudes are related by a unitless scalar value χ𝑒(𝑟 ), called electric 
susceptibility:  
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The Polarization Vector (contd.) 

Q: Can we determine the fields created by a polarized material? 

Therefore, the electric potential field created by a distribution of dipoles 

(i.e., 𝑃(𝑟 )) across some volume v is: 

 
3

0

( '). '
( ) '

4 'v

P r r r
V r dv

r r







 
3

0

. '
( )

4 '

p r r
V r

r r






A: Recall the electric potential field created by one dipole is: 
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The Polarization Vector (contd.) 

Q: But I thought scalar charge 
distributions ρ𝑣(𝑟 ) and ρ𝑠(𝑟 )created 
the electric potential field 𝑉(𝑟 ). Now 

you are saying that potential fields are 

created by the vector field 𝑃(𝑟 )!?! 

A: As we will soon see, the polarization vector 𝑃(𝑟 ) creates 
equivalent charge distributions—we will get the correct 

answer for 𝑉(𝑟 ) from either source! 
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Polarization Charge Distributions 
• Consider a chunk of dielectric material with volume v. 

Say this dielectric material is immersed in an electric field 𝐸(𝑟 ), therefore 

creating atomic dipoles with density 𝑃(𝑟 ). 

Q: What electric potential field 𝑉(𝑟 ) is created by these diploes? 

where S is the closed surface that surrounds volume v, and 𝑎 𝑛(𝑟 ) is the 
unit vector normal to surface S (pointing outward). 

It can be shown that: 

 
3

0 0
0

( '). ' ˆ1 . ( ') 1 ( '). ( )
( ) ' ' '

4 4' '4 '

n

v v S

P r r r P r P r a r
V r dv dv dS

r r r rr r  

 
  

 
  

Using 
Divergence 
Theorem  

 
3

0

( '). '
( ) '

4 'v

P r r r
V r dv

r r







A: We know that: 
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Polarization Charge Distributions (contd.) 

This complicated result is only important when we compare it to the electric 
potential created by volume charge density ρ𝑣(𝑟 ) and surface charge 

density𝜌𝑠(𝑟 ). 

 
3

0 0
0

( '). ' ˆ1 . ( ') 1 ( '). ( )
( ) ' ' '

4 4' '4 '

n

v v S

P r r r P r P r a r
V r dv dv dS

r r r rr r  

 
  

 
  

• If both volume and surface charge are present, the total electric potential 
field is: 

0 0

1 ( ') 1 ( ')
( ) ' '

4 4' '

v S

v S

r r
V r dv dS

r r r r

 

 
 

 
 

• The comparison gives: ( ) . ( )vp r P r   ˆ( ) ( ).sp nr P r a 

The subscript p (e.g., ρvp, ρsp) indicates that these functions represent 
equivalent charge densities due to the dipoles created in the dielectric. 
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Polarization Charge Distributions (contd.) 
• In other words, the electric potential field 𝑉(𝑟 ) (and thus electric field 𝐸(𝑟 )) 

created by the dipoles in the dielectric (i.e., 𝑃(𝑟 )) is indistinguishable from 
the electric potential field created by the equivalent charge densities 𝜌𝑣𝑝(𝑟 ) 
and 𝜌𝑠𝑝(𝑟 )! 

𝐸(𝑟 ) 

ˆ
za

ˆ( ) 3 zP r a C/m2 

• For example, consider a dielectric material immersed in an electric field, 

such that its polarization vector 𝑃(𝑟 ) is: 
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Polarization Charge Distributions (contd.) 

• Note since the polarization vector is a constant, the equivalent volume 
charge density is zero: 

ˆ( ) . ( ) .3 0vp zr P r a     

• On the top surface of the dielectric (𝑎 𝑛 = 𝑎 𝑧), the equivalent surface 
charge is: 

ˆ ˆ ˆ( ) ( ). 3 . 3sp n z zr P r a a a    C/m2 

• On the bottom surface of the dielectric (𝑎 𝑛 = −𝑎 𝑧), the equivalent surface 
charge is: 

ˆ ˆ ˆ( ) ( ). 3 . 3sp n z zr P r a a a      C/m2 

• On the sides of the dielectric material, the surface charge is zero, since 
(𝑎 𝑛. 𝑎 𝑧 = 0). 
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• The result actually makes physical sense! Note at the top of dielectric, there is a 
layer of positive charge, and at the bottom, there is a layer of negative charge. 

Polarization Charge Distributions (contd.) 

3sp  C/m2 

3sp   C/m2 

0vp 

• In the middle of the dielectric, there are positive charge layers on top of negative 
charge layers. The two add together and cancel each other, so that equivalent 
volume charge density is zero. 

ˆ
za
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• Finally, recall that there is no perfect dielectric, all materials will have some 
non-zero conductivity σ(𝑟 ). 

Polarization Charge Distributions (contd.) 

• This is likewise (as well as more frequently!) true for surface charge 
density: 

( ) ( ) ( )sT s spr r r   

( )vT r total volume charge density 

( )v r free charge density 

( )vp r polarization charge density 

Where: 

( ) ( ) ( )vT v vpr r r   

• As a result, we find that the total charge density within some material is 
the sum of the polarization charge density and the free charge (i.e., 
conducting charge) density: 
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Electric Flux Density 

• Yikes! Things have gotten complicated! 

• In free space, we found that charge 𝜌𝑣(𝑟 ) creates an electric field 𝐸(𝑟 ). 

Pretty simple! 𝜌𝑣(𝑟 ) 𝐸(𝑟 ) 

• But, if dielectric material is present, we find that charge 𝜌𝑣(𝑟 ) creates an 

initial electric field 𝐸𝑖(𝑟 ). This electric field in turn polarizes the material, 
forming bound charge 𝜌𝑣𝑝(𝑟 ). This bound charge, however, then creates its 

own electric field 𝐸𝑠(𝑟 ) (sometimes called a secondary field), which 
modifies the initial electric field! 

Not so simple! 𝜌𝑣(𝑟 ) 𝐸𝑖(𝑟 ) 𝜌𝑣𝑝(𝑟 ) 𝐸𝑠(𝑟 ) 

The total electric field created by free charge when dielectric 

material is present is thus 𝐸(𝑟 ) = 𝐸𝑖(𝑟 ) + 𝐸𝑠(𝑟 ). 
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Q: Isn’t there some easier way to account for the effect of dielectric 
material?? 
A: Yes there is! We use the concept of dielectric permittivity, and a new 

vector field called the electric flux density 𝐷(𝑟 ). 

Electric Flux Density (contd.) 

• To see how this works, first consider the point form of Gauss’s Law: 

0

( )
. ( ) vT r
E r




 

where 𝜌𝑣𝑇(𝑟 ) is the total charge density, consisting of both the free 
charge density 𝜌𝑣(𝑟 ) and bound charge density 𝜌𝑣𝑝(𝑟 ): 

( ) ( ) ( )vT v vpr r r   

• Therefore, we can write Gauss’s Law as: 

0 . ( ) ( ) ( )v vpE r r r    
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Electric Flux Density (contd.) 

• Recall the bound charge density is equal to: ( ) . ( )vp r P r  

• Therefore, expression for Gauss’s Law becomes: 0 . ( ) ( ) . ( )vE r r P r   

 0. ( ) ( ) ( )vE r P r r   

Note this final result says that the divergence of vector field ε0𝐸 𝑟 +

𝑃 𝑟  is equal to the free charge density 𝜌𝑣(𝑟 ). Let’s define this vector 

field the electric flux density 𝐷(𝑟 ): 

0( ) ( ) ( )D r E r P r 

• Therefore, we can write a new form of Gauss’s Law: 
0( ) ( ) ( )D r E r P r 

This equation says that the electric flux density 𝐷 𝑟  diverges from free 
charge 𝜌𝑣(𝑟 ). In other words, the source of electric flux density is free charge 

𝜌𝑣(𝑟 ) --and free charge only! 
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• The electric field 𝐸 𝑟  is created by both free charge and bound charge 
within the dielectric material. 

• However, the electric flux density 𝐷 𝑟  is created by free charge only—the 
bound charge within the dielectric material makes no difference with 

regard to 𝐷 𝑟 ! 

Electric Flux Density (contd.) 

• We can further simplify the expression. Recall that the 
polarization vector is related to electric field by 
susceptibility χ𝑒(𝑟 ): 

0( ) ( ) ( )eP r r E r 

• Therefore the electric flux 
density is: 0( ) ( ) ( )eP r r E r 

• We can further simplify this by defining the 
permittivity of the medium (the dielectric material): 

 0( ) 1 ( )er r   

• This enables us to define relative permittivity: 
0

( )
( ) 1 ( )r e

r
r r


 


 
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Electric Flux Density (contd.) 

• We can thus write a simple 
relationship between electric flux 
density and electric field: 

0( ) ( ) ( ) ( ) ( )rD r r E r r E r   

Like conductivity σ(𝑟 ), permittivity ε(𝑟 ) is a fundamental material 
parameter. Also like conductivity, it relates the electric field to another 

vector field. 

Thus, we have an alternative way to view electrostatics: 

1. Free charge 𝜌𝑣(𝑟 ) creates electric flux density 𝐷 𝑟 . 

2. The electric field can be then determined by simply dividing 𝐷 𝑟  by the 

material permittivity ε(𝑟 )  (i.e., 𝐸 𝑟 =  𝐷(𝑟 )/ε(𝑟 ). 

𝜌𝑣(𝑟 ) 𝐷(𝑟 ) 𝐸(𝑟 ) 
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Electrostatic Field Equations in Dielectrics 

• The electrostatic equations for fields in dielectric materials are: 

( ) 0E r  . ( ) ( )vD r r  ( ) ( ) ( )D r r E r

• In integral form, these equations are: 

( ). 0
C

E r dl  ( ). enc

S

D r dS Q ( ) ( ) ( )D r r E r

• Likewise, for free charge located in some homogeneous (i.e., constant) 
material with permittivity ε, we get the following relations: 

1 ( ')
( ) '

4 '

v

v

r
V r dv

r r







 2

1 ( ')
( ) '

4 '

v

v

r
E r dv

r r







 2 ( )

( ) v r
V r






 

In other words, for homogenous materials, replace ε0 (the 
permittivity of free-space) with the more general permittivity 

value ε. 
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Example – 1  

• At the center of a hollow dielectric sphere (ε = ε0ε𝑟) is placed a point 

charge Q. If the sphere has inner radius a and outer radius b, calculate 𝐷, 

𝐸 and 𝑃. 

For 𝟎 < 𝒓 < 𝒂 

Gauss’s law gives: 2
ˆ

4
r

Q
D a

r


a 

b 

2

0

ˆ
4

r

Q
E a

r


0 0P D E  

For 𝒂 < 𝒓 < 𝒃 

Gauss’s law gives: 2
ˆ

4
r

Q
D a

r


2

0

ˆ
4

r

r

Q
E a

r 


0 2

1
ˆ

4

r
e r

r

Q
P E a

r


 

 


 

ε = ε0ε𝑟 
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Example – 1 (contd.)  

For 𝒓 > 𝒃 

Gauss’s law gives: 2
ˆ

4
r

Q
D a

r


0 0P D E  2

0

ˆ
4

r

Q
E a

r


2

0

2

0

ˆ
4

ˆ otherwise
4

r

r

r

Q
a a r b

r
E

Q
a

r

 




 


 



2

1
ˆ

4

0 otherwise

r
r

r

Q
a a r b

rP



 


 

 



Therefore: 
2
ˆ

4
r

Q
D a

r
 r > 0 
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Example – 2  

Show that:  0P E   and 
1

r

r

D P






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Continuity Equation  

• The charge conservation principle says: the time rate of decrease of 
charge within a given volume must be equal to the net outward current 
flow through the surface of the volume. 

Qin is the charge 
enclosed by the closed  

surface 
From 

Divergence 
Theorem  . .

v

J dS J dv  

• We know that: 
in

v

v

dQ d
dv

dt dt



  

If we agree to 
keep the volume 

constant 

in v

v

dQ
dv

dt t

 
 



. in
out

dQ
I J dS

dt


 

• Therefore, current Iout coming out of the closed surface is:   
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Continuity Equation (contd.)  

• Therefore: . vJ
t


 



Continuity Equation or 
Continuity of Current 

Equation  

Continuity equation is derived from the principle of 
conservation of charge → It states that there can 

be no accumulation of charge at any point  

For steady currents,  0v

t





, and therefore,  . 0J 

Total charge leaving the volume is the same as 
the charge entering the volume ← precursor to 

Kirchoff’s Current Law  
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Electrostatic Boundary Conditions 

• A vector field is said to be spatially continuous if it doesn’t exhibit abrupt 
changes in either magnitude or direction as a function of position.  

• Even though the electric field may be continuous in adjoining dissimilar 
media, it may well be discontinuous at the boundary between them.  

• Boundary conditions specify how the components of fields tangential and 
normal to an interface between two media relate across the interface. 

Needless to say, these boundary conditions are equally 
valid for Electrodynamics 

. 0E dl  0E 

. enc

S

D dS Q . vD  

• To determine boundary conditions, we need to use Maxwell’s equations: 
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Dielectric – Dielectric Boundary Conditions 

• Consider the interface between two dissimilar dielectric regions: 

𝐸1(𝑟 ) 𝐷1(𝑟 ) 𝜀1 

𝐸2(𝑟 ) 𝐷2(𝑟 ) 𝜀2 

• Say that an electric field is present in both regions, thus producing also an 

electric flux density  𝐷
 
𝑟 = ε 𝐸

 
𝑟 . 

Q: How are the fields in dielectric region 1 related to the fields in region 2 ? 

A: They must satisfy the dielectric boundary conditions ! 
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• First, let’s write the fields at the dielectric interface in terms of their 

normal  𝐸𝑛(𝑟 ) and tangential 𝐸𝑡(𝑟 ) vector components: 

𝜀1 

𝜀2 

𝐸1𝑛(𝑟 ) 

𝐸1𝑡(𝑟 ) 

𝐸1 𝑟 = 𝐸1𝑛 𝑟 + 𝐸1𝑡 𝑟  

𝑎 𝑛 

𝐸2𝑛(𝑟 ) 𝐸2𝑡(𝑟 ) 

𝐸2 𝑟 = 𝐸2𝑛 𝑟 + 𝐸2𝑡 𝑟  

• Our first boundary condition states that the tangential component of the 
electric field is continuous across a boundary.  

where 𝑟 𝑏 denotes any point on 
the boundary (e.g., dielectric 

interface). 

Dielectric – Dielectric Boundary Conditions (contd.) 

1 2( ) ( )t tb bE r E r• In other words: 

The tangential component of the electric field at one side of the dielectric 
boundary is equal to the tangential component at the other side ! 
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𝜀1 

𝜀2 

𝑎 𝑛 

• We can likewise consider the electric flux densities on the dielectric 
interface in terms of their normal and tangential components: 

𝐷1𝑛(𝑟 ) 

𝐷1𝑡(𝑟 ) 

𝐷1 𝑟 = ε1𝐸1 𝑟  

𝐷2𝑛(𝑟 ) 𝐷2𝑡(𝑟 ) 

𝐷2 𝑟 = ε2𝐸2 𝑟  

Dielectric – Dielectric Boundary Conditions (contd.) 

• The second dielectric boundary condition states that the normal vector 
component of the electric flux density is continuous across the dielectric 
boundary.  

where 𝑟 𝑏 denotes any point on the 
boundary (e.g., dielectric 

interface). 

1 2( ) ( )n nb bD r D r
• In other 

words: 
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• Since 𝐷(𝑟 ) = ε𝐸(𝑟 ) , these boundary conditions can likewise be 
expressed as: 

1 2

1 2

( ) ( )t tb bD r D r

 


1 21 2( ) ( )n nb bE r E r 

Dielectric – Dielectric Boundary Conditions (contd.) 

MAKE SURE YOU UNDERSTAND THIS: 

These boundary conditions describe the relationships of the vector 

fields at the dielectric interface only (i.e., at points 𝑟 = 𝑟 𝑏)!!!! They say 
nothing about the value of the fields at points above or below the 

interface. 
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Dielectric – Dielectric Boundary Conditions (contd.) 
Proof 

• To derive the boundary conditions for tangential components of 𝐸 and 𝐷, 
let us consider the closed rectangular loop abcda.  

• The line integral along this closed loop is ZERO.  
• If ∆ℎ → 0, the contributions to the line integral by the segments bc and da 

vanish.  

𝐸2𝑛 
𝐸2𝑡 

𝐸2 

𝐸1 

𝐸1𝑡 
𝐸1𝑛 

𝑎 𝑙1 

𝑎 𝑙2 

𝐷1 

𝐷2 
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Dielectric – Dielectric Boundary Conditions (contd.) 

• Therefore: 1 21 2
ˆ ˆ. . . 0

b d

l l

C a c

E dl E a dl E a dl    
Where, 𝑎 𝑙1 and 𝑎 𝑙2 are the 

unit vectors along segments 
ab and cd.   

• Next, we decompose 𝐸1 and 𝐸2 
into components normal and 
tangential to the boundary: 

𝐸2 = 𝐸2𝑛 + 𝐸2𝑡 𝐸1 = 𝐸1𝑛 + 𝐸1𝑡 

• We also know that: 𝑎 𝑙1 = −𝑎 𝑙2 

• Thus the contour integral can be simplified to: 

 1 2 1
ˆ. 0lE E a  1 2t tE E

Thus the tangential component of the electric field is continuous 
across the boundary between any two media 

• Upon decomposing 𝐷1 and 𝐷2 into components normal and 

tangential to the boundary and noting that 𝐷1𝑡 =  ε1𝐸1𝑡 and 

𝐷2𝑡 =  ε2𝐸2𝑡 , the boundary condition on the tangential 
component of the electric flux density is: 

1 2

1 2

t tD D

 

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Dielectric – Dielectric Boundary Conditions (contd.) 

• The total outward flux through the three surfaces of the small cylinder 
must equal the total charge enclosed in the cylinder.  

• By letting the cylinder’s height ∆ℎ → 0, the contribution to the total flux 
through the side surface goes to ZERO.  

• Now, apply Gauss’s law to determine boundary conditions on the normal 

components of 𝐸 and 𝐷. 

𝐸2𝑛 
𝐸2𝑡 

𝐸2 

𝐸1 

𝐸1𝑡 
𝐸1𝑛 

𝑎 𝑙1 

𝑎 𝑙2 

𝑎 𝑛2 

𝑎 𝑛1 

𝐷1 

𝐷2 
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Dielectric – Dielectric Boundary Conditions (contd.) 

• Even if each of the two media happens to contain free charge densities, 
the only free charge remaining in the collapsed cylinder is that distributed 
on the boundary 𝑄𝑒𝑛𝑐 = ∆𝑠 × 𝜌𝑠 . 

. enc s

S

D dS Q s    

• It is important to remember that the normal unit vector at the surface of 
any medium is always defined to be in the outward direction away from 
that medium.  

1 21 2
ˆ ˆ. .n n s

top bottom

D a dS D a dS s     

• If 𝐷1𝑛 
and 𝐷2𝑛 denotes the normal components of 𝐷1 and 𝐷2 along 𝑎 𝑛2   

1 2n n sD D  

 1 2 2
ˆ. n sD D a  • Since, 𝑎 𝑛1 = −𝑎 𝑛2 
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Dielectric – Dielectric Boundary Conditions (contd.) 

• If no free charge exist at the boundary (i.e., charges are not deliberately 
placed at the boundary) then: 

1 2 0n nD D  1 2n nD D

• Thus the normal component of 𝐷 is continuous across the interface, that is 
Dn undergoes no change at the boundary.  

• The boundary conditions are usually applied in finding the electric field on 
one side of the boundary given the field on the other side.  

• Beside this, we can use the boundary conditions to determine the 
“refraction” of the electric field across the interface.  

1 21 2n nE E • Furthermore: 
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Conductor – Dielectric Boundary Conditions 
• Consider the case where region 2 is a perfect conductor: 

𝜀1 

𝐸1 𝑟 = 𝐸1𝑛 𝑟  

𝑎 𝑛 

σ2 = ∞  (i.e., perfect conductor) 

𝐸2 𝑟 = 0 

• Recall 𝐸 𝑟 = 0 in a perfect conductor. This of course 
means that both the tangential and normal 

component of 𝐸2 𝑟  are also equal to zero: 

2 2( ) 0 ( )t nE r E r 

• And, since the tangential component of the electric 
field is continuous across the boundary, we find that at 
the interface: 

1 2( ) ( ) 0t tb bE r E r 



Indraprastha Institute of 

Information Technology Delhi ECE230 

• Think about what this means! The tangential vector 
component in the dielectric (at the dielectric/conductor 
boundary) is zero. Therefore, the electric field at the 
boundary only has a normal component: 

1 1( ) ( )nb bE r E r

• Therefore, we 
can say: 

The electric field on the surface of a conductor is 
orthogonal (i.e., normal) to the conductor. 

Conductor – Dielectric Boundary Conditions (contd.) 

Q1: What about the electric flux density 𝐷1 𝑟   ? 

A1: The relation 𝐷1 𝑟 = ε1𝐸1 𝑟  is still of course valid, so that the electric 
flux density at the surface of the conductor must also be orthogonal to the 

conductor. For boundary with surface charge density (ρs), 𝐷1𝑛 𝑟 =

ε1𝐸1𝑛 𝑟 = ρ𝑠. 

Q2: But, we learnt that the normal component of the electric flux density is 

continuous across an interface. If 𝐷2𝑛 𝑟 = 0, why isn’t 𝐷1𝑛 𝑟 = 0 ? 
A2: Great question! The answer comes from a more general form of the 
boundary condition. 
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• Consider again the interface of two dissimilar dielectrics. This time, 
however, there is some surface charge distribution 𝜌𝑆 𝑟 𝑏  (i.e., free 
charge!) at the dielectric interface:  

𝐸1 𝑟 ,        𝐷1 𝑟  
𝜀1 

𝑎 𝑛 

𝐸2 𝑟 ,  𝐷2 𝑟  𝜀2 

𝜌𝑆 𝑟 𝑏   

• The boundary condition for this situation turns out to be: 

1 2ˆ . (r ) (r ) (r )n nn b b S ba D D   
  1 2D (r ) D (r ) (r )n b n b S b 

Conductor – Dielectric Boundary Conditions (contd.) 
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• Note that if 𝜌𝑆 𝑟 𝑏 =0, this boundary condition returns (both physically 
and mathematically) to the case studied earlier—the normal component 
of the electric flux density is continuous across the interface. 

1D (r ) (r )b bn S

In other words, the normal component of the electric 
flux density at the conductor surface is equal to the 

charge density on the conductor surface. 

Conductor – Dielectric Boundary Conditions (contd.) 

1ˆ . (r ) (r )n b bn Sa D 

• This more general boundary condition is useful for the 

dielectric/conductor interface. Since 𝐷2 𝑟 = 0 in the conductor, we find 
that: 
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• Note in a perfect conductor, there is plenty of free charge available to 

form this charge density! Therefore, we find in general that 𝐷1𝑛 𝑟 ≠ 0  at 
the surface of a conductor.  

𝐷1(𝑟 𝑏) 

𝜀1 

σ2 = ∞  (i.e., perfect conductor) 

𝑎 𝑛 

𝐷2 𝑟 = 0 

Conductor – Dielectric Boundary Conditions (contd.) 
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Summary: 
1 ( ) 0t bE r  1 ( ) 0t bD r 

1 ( ) ( )n b S bD r r 1

1

( )
( ) S b

n b

r
E r






Again, these boundary conditions describe the 
fields at the conductor/dielectric interface. They 

say nothing about the value of the fields at 
locations above this interface. 

Conductor – Dielectric Boundary Conditions (contd.) 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Conductor – Dielectric Boundary Conditions (contd.) 

• Thus under static conditions, the following conclusions can be made about 
a perfect conductor: 

1. No electric field may exist within a conductor, i.e.,  

ρ𝑣 = 0,             𝐸 = 0 

2. Since, 𝐸 = −∇𝑉 = 0, there can be no potential difference between any 
two points in the conductor; that is, a conductor is an equipotential 
body.  

An important use of this concept is in the design of Electrostatic Shielding  

𝐷𝑡 = ε0ε𝑟𝐸𝑡 = 0,              𝐷𝑛 = ε0ε𝑟𝐸𝑛 = 𝜌𝑠  

3. An electric field must be external to the conductor and must be normal 
to its surface. i.e.,  
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Conductor – Free Space Boundary Conditions 

• It is a special case of conductor-dielectric boundary conditions. 
• Replace by ε𝑟 = 1 in the expressions to get:  

𝐷𝑡 = ε0𝐸𝑡 = 0,              𝐷𝑛 = ε0𝐸𝑛 = 𝜌𝑠  

It should be noted once again that the electric 
field must approach a conducting surface 

normally.  


