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• Energy Density in Electrostatic Field  (contd.) 
• Conduction and Convection Current  
• Dielectrics and Conductors 
• Ohm’s Law 
• Resistor 
• Perfect Conductor  
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Example – 1  

• If 𝑉 = ρ2𝑧𝑠𝑖𝑛ϕ,  calculate the energy within the region defined by 

1 < ρ < 4,−2 < 𝑧 < 2, 0 < ϕ <
π
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Energy Density in Electrostatic Field (contd.)  

Q: Is this energy stored in the fields 𝐸 𝑟  and 𝐷(𝑟 ), or by the charge ρ𝑣(𝑟 ) ?? 
A: One equation for WE would suggest that the energy is stored by the fields, 
while the other by the charge. 
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What these expressions mean is that it takes energy to assemble a charge 

distribution ρ𝑣(𝑟 ), or equivalently, an electric field 𝐸(𝑟 ). This energy is 
stored until it is released— the charge density returns to zero. 

It turns out, either interpretation is correct! The fields 𝐸 𝑟  and 𝐷(𝑟 ) 
cannot exist without a charge density ρ𝑣(𝑟 ), and knowledge of the fields 

allow us to determine completely the charge density. 

In other words, charges and the fields they create are “inseparable 
pairs”, since both must be present, we can attribute the stored energy 

to either quantity. 
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Convection and Conduction Current  

• The current  through a given area is the electric charge 
passing through  the area per unit time. 

dQ
I

dt


• Now, if the current ∆𝐼 flows through a planar surface ∆𝑆 then: 

I
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When current density is 

perpendicular to the surface 

• For the case when current density is not normal to the surface: 
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Total current 
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I J dS  current  “I”  through S 
is the flux of current 

density 𝐽  
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Convection and Conduction Current (contd.)  

• “I” can be produced in three ways and therefore three kinds of current 
density exist: Convection Current Density, Conduction Current Density, 
and Displacement Current Density. 

• The derived expression for current density is valid for any type of current. 
• Convection current doesn’t involve conductors and as a consequence 

doesn’t satisfy Ohm’s Law.  
• It occurs when current flows through an insulating medium such as liquid, 

rarefied gas, or a vacuum.  
• A beam of electrons in a vacuum tube, for example, is a convection 

current. 
• For example, if there is a charge 

flow, of density ρv, at velocity 
𝑢 = 𝑢𝑦𝑎 𝑦 then:  
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Convection and Conduction Current (contd.)  
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Convection Current Density  

• Conduction current requires conductor. 
• A conductor is characterized by a large number of free electrons that 

provide conduction current due to an applied electric field. 

F eE 
• The force due to an electric field 𝐸  on an 

electron with charge −𝑒 is: 
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Convection and Conduction Current (contd.)  
• Since the electron isn’t free in space, it will not experience an average 

acceleration under the influence of electric field. 
• Instead, it suffers constant collisions with the atomic lattice and drifts 

from one atom to another.  

e
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m


  τ is average time 

between collisions 

• If there are 𝑛 electrons per unit volume: 
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• If electron of mass 𝑚 is moving in an electric field 𝐸 with an average drift 
velocity 𝑢 then:  
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Example – 2  
• For the current density 𝐽 = 10𝑧𝑠𝑖𝑛2ϕ𝑎 ρ 𝐴/𝑚2, find the current through 

the cylindrical surface ρ = 2, 1 ≤ 𝑧 ≤ 5 𝑚.  
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Example – 3  

• A typical example of convective 
charge transport is found in the Van 
de Graaf generator where charge is 
transported on a moving belt from 
the base to the dome as shown in 
Figure.  

• If a surface charge density 
10−7 𝐶/𝑚2  is transported by the 
belt at a velocity of 2 𝑚/𝑠, calculate 
the charge collected in 5𝑠. Take the 
width of the belt as 10 𝑐𝑚.  

 SI w u  SQ It w ut   710 0.1 2 5Q     

100Q nC 
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Dielectrics and Conductors 

• Consider a very simple model of an atom: 

-  → electron  
     (negative charge) 

+  → nucleus  
     (positive charge) 

• Say an electric field is applied to this atom. 

• Note the field will apply a force on both the positively charged nucleus 
and the negatively charged electron.  

• However, these forces will move these particles in opposite directions! 
• This will lead to two situations.  
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Dielectrics and Conductors (contd.) 

• In the first case, the atom may stretch, but the electron will remain bound 
to the atom: 

-  +  
𝑝  

𝐸(𝑟 ) 

Note, an electric dipole has been created! 
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Dielectrics and Conductors (contd.) 
• For the second case, the electron may break free from the atom, creating 

a positive ion and a free electron. We call these free charges, and the 
electric field will cause them to move in opposite directions. 

-  +  𝐸(𝑟 ) 
𝒖

− 𝒖
+ 

• Moving charge! We know what moving charge is. 

Moving charge is electric current 𝑱 (𝒓 ). 

These two examples provide a simple demonstration of what occurs 
when an electric field is applied to some material (e.g., plastic, copper, 

water, oxygen). 
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1. Materials where the charges remain bound (and thus dipoles are created) 
are called insulator (or dielectric) materials. 

2. Materials where the electrons are free to move are called conductors. 

Dielectrics and Conductors (contd.) 

Of course, materials consists of molecules with many electrons, 
and in general some electrons are bound and some are free. As a 

result, there are no perfect conductors or perfect insulators, 
although some materials are very close! 

Additionally, some materials lie between being a good 
conductor or a good insulator. We call these materials 

semiconductors (e.g., Silicon). 
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Ohm’s Law 

• Recall that a positively charged particle will move in the direction of an 
electric field, whereas a negative charge will move in the opposite 
direction. Both types of charge, however, result in current moving in the 
same direction as the electric field. 

𝐸(𝑟 ) 

-  
𝒖

− 

+  
𝒖

+ 

𝐽 (𝑟 ) 
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Ohm’s Law (contd.) 

Q: So, the direction of current density 𝐽 (𝑟 ) and electric field 𝐸(𝑟 ) are the 
same. The question then is, how are their magnitudes related? 

The scalar value σ(𝑟 ) is called the material’s conductivity.  

Note: the units of conductivity are: 
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In other words, the unit 
of conductivity is 

conductance/unit 
length. 

( ) ( ) ( )J r r E r

A: They are related by Ohm’s Law: 
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Ohm’s Law (contd.) 

• We emphasize that conductivity σ(𝑟 )  is a material parameter. For 
example, the conductivity of copper is: 

7 1
5.8 10copper

m


 
    

• and the conductivity of polyethylene (a plastic) is: 

12 1
1.5 10polyethylene

m
   

    

Note the vast difference in conductivity between these two materials. 
Copper is a conductor and polyethylene is an insulator. 

A perfect insulator (i.e., dielectric) is a material with σ = 0. 
In contrast, a perfect conductor is a material with σ = ∞.  

Alternatively, we can say: For a perfect dielectric 𝐽 = 0, 

whereas for a perfect conductor 𝐸 = 0. 
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Georg Simon Ohm (1789-1854) was the 
German physicist who in 1827 discovered 
the law that the current flowing through a 
conductor is proportional to the voltage 
and inversely proportional to the 
resistance. Ohm was then a professor of 
mathematics in Cologne. His work was 
coldly received! The Prussian minister of 
education announced that "a professor 
who preached such heresies was unworthy 
to teach science." Ohm resigned his post, 
went into academic exile for several years, 
and then left Prussia and became a 
professor in Bavaria. 
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Resistors 

• Consider a uniform cylinder of material with mediocre to poor to pathetic 
conductivity σ(𝑟 ) = σ. 

• This cylinder is centered on the z-axis, and has length l. The surface area 
of the ends of the cylinder is S. 

I 
a b 

z-axis 

S 

l 

𝐽 (𝑟 ) = 𝐽𝑎 𝑧 

• Say the cylinder has current “I” flowing into it (and thus out of it), 

producing a current density 𝐽 (𝑟 ). 
• By the way, we can refer such a cylinder as a resistor! 
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Q: What is the resistance R of this resistor, given length l, cross-section area 
S, and conductivity σ? 

Resistors (contd.) 

• From electrostatics, we know that the potential difference V is: 

( ).
b

ab
a

V V E r dl  

• and the current “I” is: ( ).
S

I J r dS 

where V is the potential difference between the two ends of the resistor 
(i.e., the voltage across the resistor), and I is the current through the 

resistor. 

V
R

I


A: Let’s first begin with the circuit form of Ohm’s Law: 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Resistors (contd.) 

• Thus, we can combine these expressions and find resistance R, expressed 

in terms of electric field 𝐸(𝑟 ) within the resistor, and the current density 

𝐽 (𝑟 ) within the resistor: 

( ).

( ).

b

a

S

E r dlV
R

I J r dS
 





• Lets evaluate each integral in this expression to determine the resistance 
R of the device described earlier! 

1. The voltage V is the potential difference Vab between point a and point b: 

( ).
b

ab
a

V V E r dl  

Q: But, what is the electric field 𝐸(𝑟 )? 

( )
( )

( )
J r

E r
r
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A: The electric field within the resistor can be determined from Ohm’s Law: 
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Resistors (contd.) 

• We can assume that the current density is approximately constant across 
the cross section of the cylinder: 

ˆ( ) zJ r Ja

• Likewise, we know that the conductivity of the resistive material is a 
constant: 

( )r 

• As a result, the electric field within the resistor is: ( )
ˆ( )

( )
z

J r J
E r a

r 
 

• Therefore, integrating in a straight line along the z-axis from point a to 
point b, we find the potential difference V to be: 
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Resistors (contd.) 

• An interesting result! Consider a resistor as sort of a “clogged pipe”. 
Increasing the cross-sectional area S makes the pipe bigger, allowing for 
more current flow. In other words, the resistance of the pipe decreases, 
as predicted by the above equation. 

• Likewise, increasing the length l simply increases the length of the “clog”. 
The current encounters resistance for a longer distance, thus the value of 
R increases with increasing length l. Again, this behavior is predicted by 
the equation shown above. 

2. We likewise know that the current I through the resistor is found by 
evaluating the surface integral: 

ˆ ˆ.z z z z
S

S

I Ja a ds J ds JS   

• Therefore, the resistance R of this particular resistor is: 

1V Jl
R

I JS

  
    
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l

S
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l1 l2 

Resistors (contd.) 

• For example, consider the case where we add two resistors together: 

1
1

l
R

S
 2

2

l
R

S


• We can view this case as a single resistor with a length l1+l2, resulting in a 
total resistance of: 

1 2
total

l l
R

S


 1 2

total

l l
R

S S 
 

1 2totalR R R  

But, this result is not the least bit surprising, as the two resistors are 
connected in series! 
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l 

1S

2S

Resistors (contd.) 

• Now let’s consider the case where two resistors are connected in a 
different manner: 

1

1

l
R

S


2

2

l
R

S


• We can view this as a single 
resistor with a total cross 
sectional area of S1+S2. Thus, 
its total resistance is: 

 1 2
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l
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Again, this should be no surprise, as these two resistors are connected 
in parallel. 
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Resistors (contd.) 

IMPORTANT NOTE: The result R= l/σS is valid only for the resistor whose 
conductivity is a constant (σ(𝑟 ) = σ). 

• If the conductivity is not a constant, then we must evaluate the potential 
difference across the resistor with the more general expression: 

( ).
b

ab
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V E r dl 
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.
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Example – 4  
• A lead (σ = 5 × 106 𝑆/𝑚) bar of square cross section has a hole bored 

along its length of 4m so that the cross section becomes as shown below. 
Find the resistance between the square ends.  

• Since the cross section of 
the bar is uniform: 

l
R

S


• Where: 2 2S d r 

• Therefore: 6 4

4
974

5 10 9 10
4

R 
 

  
 

    
 

 
2

2 1
3

2
S 

 
   

 

29
4

S cm
 

  
 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Example – 5  
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Example – 6  
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Example – 7  
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S 

l 

σ = ∞ 

Perfect Conductors 
• Consider some current with density 𝐽 (𝑟 ), flowing within some material 

with perfect conductivity (i.e., σ = ∞)! 

𝐽 (𝑟 ) 𝐸 𝑟 =? ? 

Q: What is the electric field 𝐸 𝑟  within this perfectly conducting material? 

Thus, as the material 
conductivity approaches 

infinity, we find: 

( )
lim ( ) 0

J r
E r

 
 

( )
( )

J r
E r




A: Well, we know from Ohm’s Law that the electric field is related to the 
material conductivity and current density as: 
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• The electric field within a perfectly conducting material is always equal to 
zero! 

• This makes sense when you think about it! Since the material offers no 
resistance, we can move charges through it without having to apply any 
force (i.e., and electric field). 

Perfect Conductors (contd.) 

This is just like a skater moving 
across frictionless ice! It can 
continue to move with great 

velocity, even though no force 
is being applied! 

Consider what this means with regards to a wire made of a perfectly 
conducting material (an often applied assumption). 
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Perfect Conductors (contd.) 

• The electric potential difference between either end of a perfectly 
conducting wire is zero! 

+ - ( ). 0
C

V E r dl 

Since the electric field within a perfect 
wire is zero, the voltage across any 

perfect wire is also zero, regardless of 
the current flowing through it. 


