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• Applications of Gauss Law  
• Work Done by Electric Field 
• Potential Difference 
• Potential Gradient 
• Electric Dipole 
• Equipotential Surfaces  
• Energy Density in Electrostatic Fields  
• Conduction and Convection Current  
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Example – 1  

A B 

A blue sphere A is contained within a red 
spherical shell B. There is a charge QA on the 
blue sphere and charge QB on the red 
spherical shell.  

• The electric field in the region between the spheres is 
completely independent of QB the charge on the red 
spherical shell.  

True 

False 
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Example – 2  

Consider the following  topology: 

A)   A solid non-conducting sphere carries 
a total charge Q = -3 mC distributed 
evenly throughout.  It is surrounded 
by an uncharged  conducting spherical 
shell. 

-|Q| 

ρS1 

ρS2 

• What is the surface charge density ρS1 on the inner surface of the 
conducting shell? 

(c) ρ𝑆1  
> 0 (c) ρ𝑆1  

= 0 (c) ρ𝑆1  
< 0 
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• Inside the conductor, we know the field 𝐸= 0 

Example – 2  (contd.)  

(a)  𝜌𝑠1 < 0 (b) 𝜌𝑠1 = 0 (c) ρ𝑆1  
> 0 

-|Q| 

ρS1 

ρS2 

Gaussian 
Surface 

• Select a Gaussian surface inside the conductor 

• Since 𝐸= 0 on this surface, the total enclosed charge must be 0. 
• Therefore, the surface charge density on the inner surface of the 

conducting shell must be positive, to cancel the charge -|Q|. 
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Alternative Formulation for 𝑬 Determination  

• Through Coulomb’s Law  
• Through Gauss’s Law – if charge distribution is symmetric  
• Through a Scalar Quantity (?) – easier to handle  
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Work done by Electric Field 

Q: How much work (W) is done by this vector field if the object 
moves from point A to B, along contour C?? 

• An important application of the line integral is the calculation of work. Say 

there is some vector field 𝐹 (𝑟 ) that exerts a force on some object. 

A 

B 

C 𝐹   

A: We can find out by evaluating the line integral: (r).AB

C

W F dl 

• Say this object is a charged particle with charge Q, and the force is applied 

by a static electric field 𝐸 𝑟 . We know the force on the charged particle is: 

(r) Q (r)F E
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Q: Oooh, I don’t like 
evaluating contour integrals; 
isn’t there some easier way? 

A: Yes there is! Recall that a static electric field is a conservative vector 
field. Therefore, we can write any static electric field as the gradient of a 
specific scalar field V(𝑟 ): 

Work done by Electric Field (contd.) 

• and thus the work done by the electric field in moving a charged particle 
along some contour C is: 

(r). (r).AB

C C

W F dl Q E dl  

(r) (r)E V 
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Work done by Electric Field (contd.) 

• We can then evaluate the work integral as: (r). ( ).AB

C C

W Q E dl Q V r dl    

• We define: ( ) ( ) VA B ABV r V r

• Therefore: AB ABW QV

So what the heck is VAB? 
Does it mean any thing? Do 

we use it in engineering? 

First, consider what 
WAB is! 

 ( ) ( )AB B AW Q V r V r     ( ) ( )AB A BW Q V r V r  

The value WAB represents the work done by the electric field on 
charge Q when moving it from point A to point B. This is precisely 
the same concept as when a gravitational force moves an object 

from one point to another. 
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• The work done by the gravitational field in this case is equal to the 
difference in potential energy between the object at these two points. 

• The value WAB represents the same thing! It is the difference in potential 
energy between the charge at point A and at B. 

• Great, now we know what WAB is. But the question was, WHAT IS VAB !?! 

See? The value VAB is equal to the difference in 
potential energy, per coulomb of charge! 

• In other words VAB represents the difference in potential energy for each 
coulomb of charge in Q. 

• Another way to look at it: VAB is the difference in potential energy if the 
particle has a charge of 1 Coulomb (i.e., Q =1). 

Work done by Electric Field (contd.) 

AB
AB

W
V

Q


• That’s easy! Just rearrange the  equation: 
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Work done by Electric Field (contd.) 

• We refer to the scalar field V(𝑟 ) as the electric potential function, or the 
electric potential field. 

• We likewise refer to the scalar value VAB as the electric potential 
difference, or simply the potential difference between point A and point B. 

• Note that VAB can be expressed as: 

(r). (r ) (r )AB A B

C

V E dl V V   

where point A lies at the 
beginning of contour C, and B 

lies at the end. 

• Joules/Coulomb is a rather awkward unit, so we will use the other name 
for it—VOLTS! 

1 1
Joules

Volt
Coulomb

 
 
 

AB
AB

W Joules
V

Q Coulomb

 
  

 

• Note that VAB (and therefore V(𝑟 )), has units of: 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Q: Hey! We used volts in circuits class. Is this the same thing ? 
A: It is precisely the same thing ! 

• Perhaps this will help. Say A and B are two points somewhere on a circuit. 
But let’s call these points something different, say point + and point – . 

(r).
C

V E dl + – 

• Therefore, V represents the potential difference (in volts) between point 
(i.e., node) + and point (node) – . Note this value can be either positive or 
negative. 

Work done by Electric Field (contd.) 

Q: But, does this mean that circuits produce 
electric fields? 
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A: Absolutely! Anytime you can 
measure a voltage (i.e., a potential 
difference) between two points, an 

electric field must be present! 

Work done by Electric Field (contd.) 
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Potential Difference (contd.) 

• Note that VAB can be expressed as: 

( ). (r ) (r )

B

AB A B

A

V E r dl V V   

where point A lies at the 
beginning of contour C, and B 

lies at the end. 

• The potential at any point is the potential difference between that point  
and a chosen point (or reference point) at which the potential is zero 
(usually ground !).  

( ).

r

V E r dl


 
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Polarity of Electric Potential and Fields are Opposite?  

𝐸 𝐸 𝐸 𝐸 

• Lets consider the simple case of a 
positive charge 𝑞 in a uniform electric 

field  𝐸 = −𝐸𝑎 𝑦 

• The presence of 𝐸  exerts a force 

𝐹 𝑒 = 𝑞𝐸 on the charge in the –y 
direction 

𝐹 𝑒 

• To move the charge along the +y direction against 𝐹 𝑒, there is a need of 

external force 𝐹 𝑒𝑥𝑡 to counteract 𝐹 𝑒  

𝐹 𝑒𝑥𝑡 

𝑑𝑦 

• The work done in moving the charge a vector 
differential distance dy = 𝑑𝑦𝑎 𝑦: 

 ˆ. .ext ydW F dya qE dy  

ext eF F qE   • To move  𝑞 without acceleration: 

• Now, the electric potential is the energy per unit charge: 

dW
dV

q
 .dV E dy 

Conclusion of our 
Premise ! 
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Electric  Potential for Point Charge 

Q: What is the electric potential function V(𝑟 ) generated by a point charge 
Q, located at the origin? 

Q: Where did this come from? How do we know that this is the correct 
solution? 
A: We can show it is the correct solution by direct substitution! 

• Recall that a point charge Q, located at the origin ((𝑟′ = 0), produces a 
static electric field: 

2

0

ˆ(r)
4

r

Q
E a

r


• Now, we know that this field is the gradient of some scalar field: 

(r) ( )E V r 

A: We find that it is: 
0

(r)
4

Q
V

r

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(r) ( )E V r 
04

Q

r

 
  

 
'

0

ˆ 0 0
4

r

Q
a

r r

 
    

  

The correct result! 

Q: What if the charge is not located at the origin ? 
A: Substitute r with |𝑟 − 𝑟′ |, and we get: 

Electric  Potential for Point Charge (contd.) 

Verification: 

2

0

ˆ(r) ( )
4

r

Q
E V r a

r
   

0

(r)
4 '

Q
V

r r




where, as before, the position vector 𝑟′ denotes the location of the 
charge Q, and the position vector 𝑟  denotes the location in space 

where the electric potential function is evaluated. 
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Electric  Potential for Point Charge (contd.) 

• The scalar function V(𝑟 ) for a point charge can be shown graphically as a 
contour plot: 
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Electric  Potential for Point Charge (contd.) 

• Or, in three dimensions as: 
Note the electric potential 
increases as we get closer 
to the point charge (located 
at the origin). It appears 
that we have “mountain” of 
electric potential; an 
appropriate analogy, 
considering that the 
potential energy of a mass 
in the Earth’s gravitational 
field increases with altitude 
(i.e., height)! 
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Electric  Potential for Point Charge (contd.) 

• Recall the electric field produced by a point charge is a vector field that 
looks like: 
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Electric  Potential for Point Charge (contd.) 
• Combining the electric field plot with the electric potential plot, we get: 

Given our understanding of 
the gradient, the above 

plot makes perfect sense! 
Do you see why ? 
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Electric Potential Function for Charge Densities 

• Recall the total static electric field produced by 2 different charges (or 
charge densities) is just the vector sum of the fields produced by each: 

1 2(r) (r) (r)E E E 

• Since the fields are conservative, we can write this as: 

1 2(r) (r) (r)E E E 
1 2( ) ( ) ( )V r V r V r     

 1 2( ) ( ) ( )V r V r V r   

• Therefore, we find: 1 2( ) ( ) ( )V r V r V r 

In other words, superposition also holds for the electric potential function! 
The total electric potential field produced by a collection of charges is 

simply the sum of the electric potential produced by each. 
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Electric Potential Function for Charge Densities (contd.) 
• Consider now some distribution of charge, ρ𝑣(𝑟 ). The 

amount of charge dQ, contained within small volume dv, 

located at position 𝑟′ , is: 

( ') 'vdQ r dv

• The electric potential function produced 
by this charge is therefore: 

0 0

( ') '
( )

4 ' 4 '

vdQ r dv
dV r

r r r r



 
 

 

• Therefore, integrating across all the 
charge in some volume v, we get: 

0

( ')
( ) '

4 '

v

v

r
V r dv

r r









• Likewise, for surface or 
line charge density: 

0

( ')
( ) '

4 '

S

S

r
V r dS

r r









0

( ')
( ) '

4 '

l

C

r
V r dl

r r









Note that these integrations are scalar integrations—typically they are 
easier to evaluate than the integrations resulting from Coulomb’s Law. 

• Once we find the electric potential function V 𝑟 , we can 
then determine the total electric field by taking the 
gradient: 

(r) ( )E V r 
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• Thus, we now have three (!) potential methods for determining the 
electric field produced by some charge distribution ρ𝑣(𝑟 ).  

1. Determine 𝐸 𝑟  from Coulomb’s Law. 

2. If ρ𝑣(𝑟 ) is symmetric, determine 𝐸 𝑟  from Gauss’s Law. 
3. Determine the electric potential function V 𝑟 , and then determine 

the electric field as 𝐸 𝑟 = −∇V(𝑟 ). 

Q: Yikes! Which of the three should we use?? 
A: To a certain extent, it does not matter! All three will provide the same result 
(although ρ𝑣(𝑟 ) must be symmetric to use method 2!). 

Electric Potential Function for Charge Densities (contd.) 

However, if the charge density is symmetric, we will find that using 
Gauss’s Law (method 2) will typically result in much less work! 

Otherwise (i.e., for non-symmetric ρ𝑣(𝑟 )), we find that sometimes 
method 1 is easiest, but in other cases method 3 is a bit less stressful 

(i.e., you decide!). 
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Example – 3 

• Determine the electric potential at the origin due to four 20-mC charges 
residing in free space at the corners of a 2𝑚 × 2𝑚 square centered about 
the origin in the x–y plane. 

' 2R r r m  

6 5

00

4 20 10 2 10
( )

4 2
V r



   
   (V) 

• For four identical charges all equidistant 
from the origin: 

0

4
( )

4

Q
V r

R

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Example – 4  

• A spherical shell of radius R has a uniform surface charge density ρS. 
Determine the electric potential at the center of the shell. 

 2

0 0

( ) 4
4

S S R
V r R

R

 


 
  

0

( ')
( ) '

4 '

S

S

r
V r dS

r r









0

'
( )

4 '

S

S

dS
V r

r r









0

( ) '
4

S

S

V r dS
R




 
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Relationship between 𝑬 and V 

• We have learnt that the electrostatic field is conservative and therefore, 
following  is true for the given situation: 

BA ABV V  . 0BA AB

L

V V E dl  

Line integral of 𝐸along a 
closed path is zero  

• Lets apply Stoke’s theorem:  . 0 .
L S

E dl E dS     0E  

Conservative or Irrotational 
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Relationship between 𝑬 and V (contd.) 

0E  . 0BA AB

L

V V E dl  

• We defined potential as: .V E dl  .dV E dl  

x y zdV E dx E dy E dz    

• Alternatively we can also write: 
V V V

dV dx dy dz
x y z

  
  

  

• Comparison gives: x

V
E

x


 


y

V
E

y


 


z

V
E

z


 



• Therefore: E V 

Maxwell’s equations for Electrostatics  Intergal 
Form 

Differential 
Form 
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Relationship between 𝑬 and V (contd.) 

E V 

The electric field intensity is the gradient of 𝑉. The 

negative sign shows that the direction of 𝐸 is opposite to 

the direction in which V increases ↔  𝐸 is directed from 
higher to lower levels of V  

It provides another tool to determine electric field apart from Coulomb’s 

and Gauss’s laws → 𝐸 can be obtained if the scalar function V is known  
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Example – 5  

• Determine Electric Field due to potential: 𝑉 = ρ2 𝑧 + 1 𝑠𝑖𝑛ϕ 

E V  
1

ˆ ˆ ˆ
z

V V V
E a a a

z
 

  

  
   

  

2ˆ ˆ ˆ2 ( 1)sin ( 1)cos sin zE z a z a a            

2ˆ ˆ ˆ2 ( 1)sin ( 1)cos sin zE z a z a a            
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Example – 6  

• Determine Electric Field due to potential: 𝑉 = 𝑒−𝑟𝑠𝑖𝑛θ𝑐𝑜𝑠2ϕ 

E V  
1 1

ˆ ˆ ˆ
sin

r

V V V
E a a a

r r r
 

  

  
   

  

1
ˆ ˆ ˆsin cos2 cos cos2 ( 2sin 2 )

r
r r

r

e
E e a e a a

r r
     


       

1 2
ˆ ˆ ˆsin cos2 cos cos2 sin 2

r
r r

r

e
E e a e a a

r r
     


    
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Example – 7  

• Given that 𝐸 = 3𝑥2 + 𝑦 𝑎 𝑥 + 𝑥𝑎 𝑦 𝑘𝑉/𝑚, find the work done in moving 

a −2𝜇𝐶 charge from 0, 5, 0  to 2,−1, 0  by taking the straight line path: 
       
     (a) 0, 5, 0  →  2, 5, 0  →  2, −1, 0  
     (b) 𝑦 = 5 − 3𝑥 
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Poisson’s and Laplace’s Equation 

• From Gauss’s Law:  
0

. vE



 

E V • We have:  
 

0

. vV



   

2 2 2
2

2 2 2

0

vV V V
V

x y z





  
     

  
(Poisson’s Equation) 

• If the medium under consideration contains no charge then: 2 0V 

Laplace’s Equations 

These formulations are extremely useful for determining the electrostatic 
potential V in regions with boundaries on which V is known, such as the 

regions between the plates of a capacitor with specified voltage difference 
across it.  
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Electric Dipole 

• An electric dipole is formed when two point charges of equal magnitude 
but opposite signs are separated by a small distance → a pretty useful 
configuration!!!  

• In practical situation, the distance from the point of interest is much 
greater than the separation.  

P

+Q

-Q

r1

r
r2









cos

2

d



z
a


d 

• Since 𝑟 ≫ 𝑑; r, r1, and r2 are almost parallel. 

1 cos
2

d
r r   2 cos

2

d
r r  

2 1 cosr r d   

2

1 2r r r• Furthermore: 

2 1

0 1 2 0 1 2

1 1

4 4

Q Q r r
V

r r r r 

   
     

   

• The potential at point 𝑃(𝑟, θ, ϕ) is: 
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Electric Dipole (contd.) 

2

0

cos

4

Q d
V

r




 

• Since, dcosθ = 𝑑 . 𝑎𝑟  2

0

ˆ.

4

rQd a
V

r
 

Qd = p   is the 
dipole moment 

Dipole moment is 
directed from –Q to +Q  

• The electric field due to the dipole with center at the origin:  

1
ˆ ˆ

r

V V
E V a a

r r




  
       

2

0

ˆ.

4

rp a
V

r
 

• If the dipole center is not at the origin 
but at r’ then: 

 
3

0

. '

4 '

p r r
V

r r






3 3

0 0

cos s
ˆ ˆ

2 4
r

Qd Qd in
E a a

r r


 

 
 
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 3

0

ˆ ˆ2cos s
4

r

Qd
E a in a

r
 


  

• It is important to notice that a point charge is a monopole and its 𝐸 varies 
inversely as r2 while its V varies inversely as r. For a dipole, the respective 

variations are 𝐸 ∝
1

r3 
 and  V∝

1

r2 
  while 𝐸 due to successive higher-order 

multipoles vary inversely as r4, r5, r6, …., and their corresponding V vary 
inversely as r3, r4, r5, …… 

Electric Dipole (contd.) 

 3

0

ˆ ˆ2cos s
4

r

p
E a in a

r
 


  

p p Qd 
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Example – 8  
• Point charges 𝑄 and −𝑄 are located at (0,

𝑑

2
, 0) and 0,−

𝑑

2
, 0 . Show that 

at point 𝑟, θ, ϕ , where 𝑟 ≫ 𝑑,   

2

0

sin sin

4

Qd
V

r

 


 • Find the corresponding 𝐸 as well. 

ˆ ˆ ˆ. . sin sinr y rp a Qda a Qd   
2

0

sin sin

4

Qd
V

r

 


 

1 1
ˆ ˆ ˆ

sin
r

V V V
E a a a

r r r
 

  

  
   

  

3 3 3

0

2sin sin cos sin cos
ˆ ˆ ˆ

4
r

Qd
E a a a

r r r
 

    



 
    

 

2

0

sin sin

4

Qd
V

r

 




• The dipole is oriented along y-axis. Therefore: 

E V Now: 

 3

0

ˆ ˆ ˆ2sin sin cos sin cos
4

r

Qd
E a a a

r
     


   
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Equipotential Surfaces 

• At each point on the surface, the electric field is perpendicular to the 
surface since the electric field, being the gradient of potential, does not 
have component along a surface of constant potential. 

• We have seen that any charge on a conductor must reside on its surface. 
These charges would move along the surface if there were a tangential 
component of the electric field. The electric field must therefore be along 
the normal to the surface of a conductor. The conductor surface is, 
therefore, an equipotential surface. 

• Electric field lines are perpendicular to equipotential surfaces (or curves) 
and point in the direction from higher potential to lower potential. 

• In the region where the electric field is strong, the equipotentials are 
closely packed as the gradient is large. 

• Equipotential surfaces are defined as surfaces over which the potential is 
constant. 

𝑉 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
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Example – 9: Determine the equipotential surface for a point charge. 

Thus the surfaces are 
concentric spheres with the 
origin (the location of the 

charge) as the centre.  

Equipotential surfaces (magenta) 
and field lines (blue) for a positive 

charge 

• Let the point charge 𝑞 be located at the origin. The equation to the 
equipotential surface is given by: 

02 2 2
0

1
( , . )

4

Q
V x y z V

x y z
 

 
= constant 

Equipotential Surfaces (contd.) 
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• The equipotential surfaces of an 
electric dipole is: 

Equipotential surfaces (magenta) 
and field lines (green) 

Importance of Equipotential Surfaces will be apparent when we 

discuss conducting bodies in 𝐸 

A typical use of field lines and equipotential surfaces is found in the 
diagnosis of human heart. The human heart beats in response to an electric 

potential difference across it.  The heart can be characterized as a dipole 
with the field map similar to that of an electric dipole. Such a field map is 

useful in detecting abnormal heart position. 

Equipotential Surfaces (contd.) 
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Energy Density in Electrostatic Field  
• To determine the energy in an assembly of charges, let us first determine 

the amount of work needed to assemble them.  

• No work is required to transfer Q1 from infinity to P1 as the space is free 
from any charge and thus without any electric field.  

• The work done in transferring Q2 from infinity to P2 is Q2V21. 
• The work done in bringing Q3 from infinity to P3 is Q3(V32+V31). 

 2 21 3 31 320EW Q V Q V V   

• Suppose, 3 point charges Q1, Q2 and Q3 need to be assembled in empty 
space.    

1 2 3EW W W W  • Therefore:   
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Energy Density in Electrostatic Field (contd.)  
• If the charges were positioned in reverse order, then: 

3 2 1EW W W W    2 23 1 12 130EW Q V Q V V   

• Lets combine the two expressions to get: 

     1 12 13 2 21 23 3 31 322 EW Q V V Q V V Q V V      1 1 2 2 3 32 EW QV Q V Q V  

 1 1 2 2 3 3

1

2
EW QV Q V Q V   

where V1, V2 and V3 are the total potentials at P1, P2 and P3 respectively. 
In general, if there are n point charges then: 

1

1

2

n

E k k

k

W Q V


  
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Energy Density in Electrostatic Field (contd.)  
• For continuous charge distributions: 

1

2
E l

L

W Vdl 
1

2
E S

S

W VdS 
1

2
E v

v

W Vdv 

• We know from Maxwell’s equation for electrostatics: .v D  

 1 1
.

2 2
E v

v v

W Vdv D Vdv   • Therefore: 

• We also know the relationship:  . . .V D D V V D    

 . . .V D V D D V     

• Thus:    1 1
. .

2 2
E

v v

W V D dv D V dv    



Indraprastha Institute of 

Information Technology Delhi ECE230 

Energy Density in Electrostatic Field (contd.)  

• Application of Divergence Theorem leads to: 

   1 1
. .

2 2
E

S v

W V D dS D V dv   

For large surface 
 1

. 0
2

S

V D dS 

• Thus:  1
.

2
E

v

W D V dv    1
.

2
E

v

W D E dv 
E V 

• We know that  𝐷 = ε0𝐸: 2

0

1

2
E

v

W E dv  

• Therefore energy density wE [in J/m3) is: 
2

2

0

0

1 1
.

2 2 2

E
E

dW D
W D E E

dv



   
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Example – 10  

• If 𝑉 = ρ2𝑧𝑠𝑖𝑛ϕ,  calculate the energy within the region defined by 

1 < ρ < 4,−2 < 𝑧 < 2, 0 < ϕ <
π

3
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Example – 11  

• Point charges 𝑄1 = 1 𝑛𝐶, 𝑄2 = −2 𝑛𝐶, 𝑄3 = 3 𝑛𝐶, 𝑎𝑛𝑑 𝑄4 = −4 𝑛𝐶 are 
positioned one at  a time and in that order at 0, 0, 0 , 1, 0, 0 , 0, 0, −1 , 
and 0, 0, 1 , respectively. Calculate the energy in the system after each 
charge is positioned.  
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Electrostatic Discharge (ESD) 

• It refers to the sudden transfer of static charge between objects at 
different electrostatic potential.  

• For example, the “zap” you feel while walking on a synthetic  carpet and 
then touching a metal doorknob.   

• Design of mechanism to protect electronic devices, systems, and 
equipments against the static electricity is extremely important.  

Please go through the additional materials posted on course URL to 
know about ESD, its impact, and the associated issues and solutions 
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• We have been studying the electrostatics of free space (i.e., a vacuum). 

But, the universe is full of stuff! 

Q: Does stuff (material) affect our electrostatics knowledge? 
A: ??? 

New Beginning 
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Convection and Conduction Current  

• The current  through a given area is the electric charge 
passing through  the area per unit time. 

dQ
I

dt


• Now, if the current ∆𝐼 flows through a planar surface ∆𝑆 then: 

I
J

S




 Current Density 

I J S   
When current density is 

perpendicular to the surface 

• For the case when current density is not normal to the surface: 

.I J S  
Total current 

flowing through 
the surface 

.
S

I J dS  current  “I”  through S 
is the flux of current 

density 𝐽  
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Convection and Conduction Current (contd.)  

• “I” can be produced in three ways and therefore three kinds of current 
density exist: Convection Current Density, Conduction Current Density, 
and Displacement Current Density. 

• The derived expression for current density is valid for any type of current. 
• Convection current doesn’t involve conductors and as a consequence 

doesn’t satisfy Ohm’s Law.  
• It occurs when current flows through an insulating medium such as liquid, 

rarefied gas, or a vacuum.  
• A beam of electrons in a vacuum tube, for example, is a convection 

current. 
• For example, if there is a charge 

flow, of density ρv, at velocity 
𝑢 = 𝑢𝑦𝑎 𝑦 then:  

v

Q y
I S

t t


 
   

 
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Convection and Conduction Current (contd.)  

v v y

y
I S S u

t
 


     



Y-directed 
current density 

y v y

I
J u

S



 

 vJ u

Generic 
Expression 

Convection Current Density  

• Conduction current requires conductor. 
• A conductor is characterized by a large number of free electrons that 

provide conduction current due to an applied electric field. 

F eE 
• The force due to an electric field 𝐸  on an 

electron with charge −𝑒 is: 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Convection and Conduction Current (contd.)  
• Since the electron isn’t free in space, it will not experience an average 

acceleration under the influence of electric field. 
• Instead, it suffers constant collisions with the atomic lattice and drifts 

from one atom to another.  

e
u E

m


  τ is average time 

between collisions 

• If there are 𝑛 electrons per unit volume: 

v ne  
2

v

ne
J u E

m


  J E

Point form of 
Ohm’s Law 

2ne

m




Conductivity 
of Conductor 

mu
eE


 

• If electron of mass 𝑚 is moving in an electric field 𝐸 with an average drift 
velocity 𝑢 then:  
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Example – 12  
• For the current density 𝐽 = 10𝑧𝑠𝑖𝑛2ϕ𝑎 ρ 𝐴/𝑚

2, find the current through 
the cylindrical surface ρ = 2, 1 ≤ 𝑧 ≤ 5 𝑚.  

ˆdS d dza  .
S

I J dS 
2 5

2

2

0 1

10 sin |
z

I z dzd







  

 

  

 
52 5 22

2

2

0 1 01

1
10 sin | 10(2) 1 cos2

2 2
z

z
I z dzd d

 





   

 

 
    

 
   240 754I    A 
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Example – 13  

• A typical example of convective 
charge transport is found in the Van 
de Graaf generator where charge is 
transported on a moving belt from 
the base to the dome as shown in 
Figure.  

• If a surface charge density 
10−7 𝐶/𝑚2  is transported by the 
belt at a velocity of 2 𝑚/𝑠, calculate 
the charge collected in 5𝑠. Take the 
width of the belt as 10 𝑐𝑚.  

 SI w u  SQ It w ut   710 0.1 2 5Q     

100Q nC 


