Lecture - 6

Date: 22.01.2015

- Applications of Gauss Law
- Work Done by Electric Field
- Potential Difference
- Potential Gradient
- Electric Dipole
- Equipotential Surfaces
- Energy Density in Electrostatic Fields
- Conduction and Convection Current

Example - 1

A blue sphere A is contained within a red spherical shell B . There is a charge Q_{A} on the blue sphere and charge Q_{B} on the red spherical shell.

- The electric field in the region between the spheres is completely independent of Q_{B} the charge on the red spherical shell.

[^0]
Example - 2

Consider the following topology:
A) A solid non-conducting sphere carries a total charge $Q=-3 \mathrm{mC}$ distributed evenly throughout. It is surrounded by an uncharged conducting spherical shell.

- What is the surface charge density $\rho_{\mathrm{S} 1}$ on the inner surface of the conducting shell?
(c) $\rho_{S 1}<0$
(c) $\rho_{S 1}=0$
(c) $\rho_{S 1}>0$

Example - 2 (contd.)

- Inside the conductor, we know the field $\vec{E}=0$
- Select a Gaussian surface inside the conductor
- Since $\vec{E}=0$ on this surface, the total enclosed charge must be 0 .
- Therefore, the surface charge density on the inner surface of the conducting shell must be positive, to cancel the charge $-|\mathrm{Q}|$.

Alternative Formulation for \vec{E} Determination

- Through Coulomb's Law
- Through Gauss's Law - if charge distribution is symmetric
- Through a Scalar Quantity (?) - easier to handle

Work done by Electric Field

- An important application of the line integral is the calculation of work. Say there is some vector field $\vec{F}(\bar{r})$ that exerts a force on some object.
Q: How much work (W) is done by this vector field if the object moves from point A to B, along contour C ??

A: We can find out by evaluating the line integral: $\quad W_{A B}=\int_{C} \vec{F}(\overline{\mathrm{r}}) \cdot \overline{d l}$

- Say this object is a charged particle with charge Q, and the force is applied by a static electric field $\vec{E}(\bar{r})$. We know the force on the charged particle is:

$$
\vec{F}(\overrightarrow{\mathrm{r}})=\mathrm{Q} \vec{E}(\overrightarrow{\mathrm{r}})
$$

Work done by Electric Field (contd.)

- and thus the work done by the electric field in moving a charged particle along some contour C is:

$$
W_{A B}=\int_{C} \vec{F}(\overline{\mathrm{r}}) \cdot \overline{d l}=Q \int_{C} \vec{E}(\overline{\mathrm{r}}) \cdot \overline{d l}
$$

A: Yes there is! Recall that a static electric field is a conservative vector field. Therefore, we can write any static electric field as the gradient of a specific scalar field $\mathrm{V}(\bar{r})$:

$$
\vec{E}(\overline{\mathrm{r}})=-\nabla V(\overline{\mathrm{r}})
$$

Work done by Electric Field (contd.)

- We can then evaluate the work integral as: $W_{A B}=Q \int_{C} \vec{E}(\overline{\mathrm{r}}) \cdot \overline{d l}=-Q \int_{C} \nabla V(\bar{r}) \cdot \overline{d l}$

$$
\Rightarrow W_{A B}=-Q\left[V\left(\bar{r}_{B}\right)-V\left(\bar{r}_{A}\right)\right]
$$

$$
\therefore W_{A B}=Q\left[V\left(\bar{r}_{A}\right)-V\left(\bar{r}_{B}\right)\right]
$$

- We define: $V\left(\bar{r}_{A}\right)-V\left(\bar{r}_{B}\right) \doteq \mathrm{V}_{A B}$
- Therefore:

So what the heck is V_{AB} ? Does it mean any thing? Do we use it in engineering?

First, consider what

$$
W_{A B} \text { is! }
$$

The value W_{AB} represents the work done by the electric field on charge Q when moving it from point A to point B. This is precisely the same concept as when a gravitational force moves an object from one point to another.

Work done by Electric Field (contd.)

- The work done by the gravitational field in this case is equal to the difference in potential energy between the object at these two points.
- The value $W_{A B}$ represents the same thing! It is the difference in potential energy between the charge at point A and at B.
- Great, now we know what W_{AB} is. But the question was, WHAT IS V_{AB} !?!
- That's easy! Just rearrange the equation:

$$
V_{A B}=\frac{W_{A B}}{Q} \begin{aligned}
& \text { See? The value } \mathrm{V}_{\mathrm{AB}} \text { is equal to the difference in } \\
& \text { potential energy, per coulomb of charge! }
\end{aligned}
$$

- In other words V_{AB} represents the difference in potential energy for each coulomb of charge in Q .
- Another way to look at it: V_{AB} is the difference in potential energy if the particle has a charge of 1 Coulomb (i.e., $\mathrm{Q}=1$).

Work done by Electric Field (contd.)

- Note that V_{AB} can be expressed as:
where point A lies at the beginning of contour C , and B lies at the end.
- We refer to the scalar field $\mathrm{V}(\bar{r})$ as the electric potential function, or the electric potential field.
- We likewise refer to the scalar value $V_{A B}$ as the electric potential difference, or simply the potential difference between point A and point B.
- Note that V_{AB} (and therefore $\mathrm{V}(\bar{r})$), has units of:

$$
\left(V_{A B}=\frac{W_{A B}}{Q}\left[\frac{\text { Joules }}{\text { Coulomb }}\right]\right.
$$

- Joules/Coulomb is a rather awkward unit, so we will use the other name for it-VOLTS!

$$
\left(1\left[\frac{\text { Joules }}{\text { Coulomb }}\right] \doteq 1\right. \text { Volt }
$$

Work done by Electric Field (contd.)

Q: Hey! We used volts in circuits class. Is this the same thing ?
A: It is precisely the same thing !

- Perhaps this will help. Say A and B are two points somewhere on a circuit. But let's call these points something different, say point + and point - .

- Therefore, V represents the potential difference (in volts) between point (i.e., node) + and point (node) - . Note this value can be either positive or negative.

Q: But, does this mean that circuits produce electric fields?

Work done by Electric Field (contd.)

Potential Difference (contd.)

- Note that V_{AB} can be expressed as:

$$
V_{A B}=-\int_{A}^{B} \vec{E}(\bar{r}) \cdot \overline{d l}=V\left(\overline{\mathrm{r}}_{A}\right)-V\left(\overline{\mathrm{r}}_{B}\right)
$$

where point A lies at the beginning of contour C , and B lies at the end.

- The potential at any point is the potential difference between that point and a chosen point (or reference point) at which the potential is zero (usually ground !).

$$
V=-\int_{\infty}^{r} \vec{E}(\bar{r}) \cdot \overline{d l}
$$

Polarity of Electric Potential and Fields are Opposite?

- Lets consider the simple case of a positive charge q in a uniform electric field $\vec{E}=-E \hat{a}_{y}$
- The presence of \vec{E} exerts a force $\vec{F}_{e}=q \vec{E}$ on the charge in the -y direction

- To move the charge along the +y direction against \vec{F}_{e}, there is a need of external force $\vec{F}_{\text {ext }}$ to counteract \vec{F}_{e}
- To move q without acceleration:

$$
\vec{F}_{e x t}=-\vec{F}_{e}=-q \vec{E}
$$

- The work done in moving the charge a vector differential distance $\overline{\mathrm{dy}}=d y \hat{a}_{y}$:

$$
d W=\vec{F}_{\text {ext }} \cdot\left(d y \hat{a}_{y}\right)=-q \vec{E} \cdot \overline{d y}
$$

- Now, the electric potential is the energy per unit charge:

$$
d V=\frac{d W}{q}
$$

$$
d V=-\vec{E} \cdot \overrightarrow{d y}
$$

Conclusion of our Premise!

Electric Potential for Point Charge

- Recall that a point charge Q , located at the origin $\left(\left(\overline{r^{\prime}}=0\right)\right.$, produces a static electric field:

$$
\vec{E}(\overline{\mathrm{r}})=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{a}_{r}
$$

- Now, we know that this field is the gradient of some scalar field:

$$
\vec{E}(\overline{\mathrm{r}})=-\nabla V(\bar{r})
$$

Q: What is the electric potential function $\mathrm{V}(\bar{r})$ generated by a point charge Q, located at the origin?
A: We find that it is:

$$
V(\overline{\mathrm{r}})=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

Q: Where did this come from? How do we know that this is the correct solution?
A: We can show it is the correct solution by direct substitution!

Electric Potential for Point Charge (contd.)

Verification: $\quad \vec{E}(\overline{\mathrm{r}})=-\nabla V(\bar{r})=-\nabla\left(\frac{Q}{4 \pi \varepsilon_{0} r}\right)=-\frac{\partial}{\partial r}\left(\frac{Q}{4 \pi \varepsilon_{0} r}\right) \hat{a}_{r}+0+0$

$$
\therefore \vec{E}(\overline{\mathrm{r}})=-\nabla V(\bar{r})=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{a}_{r}
$$

Q: What if the charge is not located at the origin ?
A: Substitute r with $\left|\bar{r}-\bar{r}^{\prime}\right|$, and we get:

$$
V(\overline{\mathrm{r}})=\frac{Q}{4 \pi \varepsilon_{0}|\bar{r}-\bar{r}|}
$$

where, as before, the position vector $\overline{r^{\prime}}$ denotes the location of the charge Q , and the position vector \bar{r} denotes the location in space where the electric potential function is evaluated.

Electric Potential for Point Charge (contd.)

- The scalar function $\mathrm{V}(\bar{r})$ for a point charge can be shown graphically as a contour plot:

Electric Potential for Point Charge (contd.)

- Or, in three dimensions as:

Note the electric potential
 increases as we get closer to the point charge (located at the origin). It appears that we have "mountain" of electric potential; an appropriate analogy, considering that the potential energy of a mass in the Earth's gravitational field increases with altitude (i.e., height)!

Electric Potential for Point Charge (contd.)

- Recall the electric field produced by a point charge is a vector field that looks like:

Electric Potential for Point Charge (contd.)

- Combining the electric field plot with the electric potential plot, we get:

Given our understanding of the gradient, the above plot makes perfect sense!

Do you see why?

Electric Potential Function for Charge Densities

- Recall the total static electric field produced by 2 different charges (or charge densities) is just the vector sum of the fields produced by each:

$$
\vec{E}(\overrightarrow{\mathrm{r}})=\overrightarrow{E_{1}}(\overrightarrow{\mathrm{r}})+\overrightarrow{E_{2}}(\overrightarrow{\mathrm{r}})
$$

- Since the fields are conservative, we can write this as:

$$
\begin{array}{r}
\vec{E}(\overline{\mathrm{r}})=\overrightarrow{E_{1}}(\overline{\mathrm{r}})+\overrightarrow{E_{2}}(\overline{\mathrm{r}}) \quad \Rightarrow-\nabla V(\bar{r})=-\nabla V_{1}(\bar{r})-\nabla V_{2}(\bar{r}) \\
\therefore-\nabla V(\bar{r})=-\nabla\left(V_{1}(\bar{r})+V_{2}(\bar{r})\right)
\end{array}
$$

- Therefore, we find:

$$
V(\bar{r})=V_{1}(\bar{r})+V_{2}(\bar{r})
$$

In other words, superposition also holds for the electric potential function! The total electric potential field produced by a collection of charges is simply the sum of the electric potential produced by each.

Electric Potential Function for Charge Densities (contd.)

- Consider now some distribution of charge, $\rho_{v}(\bar{r})$. The amount of charge dQ, contained within small volume $d v$,

$$
d Q=\rho_{v}\left(\bar{r}^{\prime}\right) d v^{\prime}
$$ located at position $\overline{r^{\prime}}$, is:

- The electric potential function produced by this charge is therefore:

$$
d V(\bar{r})=\frac{d Q}{4 \pi \varepsilon_{0}|\bar{r}-\bar{r}|}=\frac{\rho_{v}\left(\bar{r}^{\prime}\right) d v^{\prime}}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}^{\prime}\right|}
$$

- Therefore, integrating across all the charge in some volume v, we get:

$$
V(\bar{r})=\iiint_{v} \frac{\rho_{v}\left(\bar{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\bar{r}-\overline{r^{\prime}}\right|} d v^{\prime}
$$

- Likewise, for surface or line charge density:

$$
V(\bar{r})=\iint_{S} \frac{\rho_{S}\left(\overline{r^{\prime}}\right)}{4 \pi \varepsilon_{0}\left|\bar{r}-\overline{r^{\prime}}\right|} d S^{\prime}
$$

$$
V(\bar{r})=\int_{C} \frac{\rho_{l}\left(\bar{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}^{\prime}\right|} d l^{\prime}
$$

Note that these integrations are scalar integrations-typically they are easier to evaluate than the integrations resulting from Coulomb's Law.

- Once we find the electric potential function $\mathrm{V}(\bar{r})$, we can then determine the total electric field by taking the

$$
\vec{E}(\overline{\mathrm{r}})=-\nabla V(\bar{r})
$$ gradient:

Electric Potential Function for Charge Densities (contd.)

- Thus, we now have three (!) potential methods for determining the electric field produced by some charge distribution $\rho_{v}(\bar{r})$.

1. Determine $\vec{E}(\bar{r})$ from Coulomb's Law.
2. If $\rho_{v}(\bar{r})$ is symmetric, determine $\vec{E}(\bar{r})$ from Gauss's Law.
3. Determine the electric potential function $\mathrm{V}(\bar{r})$, and then determine the electric field as $\vec{E}(\bar{r})=-\nabla \mathrm{V}(\bar{r})$.

Q: Yikes! Which of the three should we use??
A: To a certain extent, it does not matter! All three will provide the same result (although $\rho_{v}(\bar{r})$ must be symmetric to use method 2 !).

However, if the charge density is symmetric, we will find that using Gauss's Law (method 2) will typically result in much less work!

Otherwise (i.e., for non-symmetric $\rho_{v}(\bar{r})$), we find that sometimes method 1 is easiest, but in other cases method 3 is a bit less stressful (i.e., you decide!).

Example - 3

- Determine the electric potential at the origin due to four $20-\mathrm{mC}$ charges residing in free space at the corners of a $2 m \times 2 m$ square centered about the origin in the $x-y$ plane.

- For four identical charges all equidistant from the origin:

$$
V(\bar{r})=\frac{4 Q}{4 \pi \varepsilon_{0} R} \quad R=\left|\bar{r}-\overline{r^{\prime}}\right|=\sqrt{2} m
$$

$$
\therefore V(\bar{r})=\frac{4 \times 20 \times 10^{-6}}{4 \pi \varepsilon_{0} \sqrt{2}}=\frac{\sqrt{2} \times 10^{-5}}{\pi \varepsilon_{0}}(\mathrm{~V})
$$

Example - 4

- A spherical shell of radius R has a uniform surface charge density ρ_{S}. Determine the electric potential at the center of the shell.

$$
V(\bar{r})=\iint_{S} \frac{\rho_{S}\left(\overline{r^{\prime}}\right)}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}^{\prime}\right|} d S^{\prime} \quad V(\bar{r})=\frac{\rho_{S}}{4 \pi \varepsilon_{0}} \iint_{S} \frac{d S^{\prime}}{\left|\bar{r}-\bar{r}^{\prime}\right|} \longmapsto V(\bar{r})=\frac{\rho_{S}}{4 \pi \varepsilon_{0} R} \iint_{S} d S^{\prime}
$$

$$
\therefore V(\bar{r})=\frac{\rho_{S}}{4 \pi \varepsilon_{0} R}\left(4 \pi R^{2}\right)=\frac{\rho_{S} R}{\varepsilon_{0}}
$$

Relationship between $\overrightarrow{\boldsymbol{E}}$ and V

- We have learnt that the electrostatic field is conservative and therefore, following is true for the given situation:

$$
V_{B A}=-V_{A B} \quad V_{B A}+V_{A B}=\oint_{L} \vec{E} \cdot \overline{d l}=0
$$

- Lets apply Stoke's theorem: $\oint_{L} \vec{E} \cdot \overline{d l}=0=\int_{S}(\nabla \times \vec{E}) \cdot \overline{d S} \longrightarrow \nabla \times \vec{E}=0$

Relationship between \vec{E} and V (contd.)

- We defined potential as: $\quad V=-\int \vec{E} \cdot \overline{d l} \quad \Rightarrow d V=-\vec{E} \cdot \overline{d l}$

$$
\Rightarrow d V=-E_{x} d x-E_{y} d y-E_{z} d z
$$

- Alternatively we can also write: $\quad d V=\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial z} d z$
- Comparison gives: $E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}$
- Therefore:

$$
\vec{E}=-\nabla V
$$

Relationship between \vec{E} and V (contd.)

Example - 5

- Determine Electric Field due to potential: $V=\rho^{2}(z+1) \sin \phi$

$$
\begin{aligned}
-\vec{E} & =\nabla V \\
\Rightarrow & -\vec{E}=2 \rho(z+1) \sin \phi \hat{a}_{\rho}+\rho(z+1) \cos \phi \hat{a}_{\phi}+\rho^{2} \sin \phi \hat{a}_{z}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \hat{a}_{\phi}+\frac{\partial V}{\partial z} \hat{a}_{z}
\end{aligned}
$$

$$
\therefore \vec{E}=-2 \rho(z+1) \sin \phi \hat{a}_{\rho}-\rho(z+1) \cos \phi \hat{a}_{\phi}-\rho^{2} \sin \phi \hat{a}_{z}
$$

Example-6

- Determine Electric Field due to potential: $V=e^{-r} \sin \theta \cos 2 \phi$

$$
\begin{aligned}
& -\vec{E}=\nabla V \\
\Rightarrow & -\vec{E}=-e^{-r} \sin \theta \cos 2 \phi \hat{a}_{r}+\frac{1}{r} e^{-r} \cos \theta \cos 2 \phi \hat{a}_{\theta}+\frac{e^{-r}}{r}(-2 \sin 2 \phi) \hat{a}_{\phi}+\frac{\partial V}{\partial \theta} \hat{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{a}_{\phi} \\
& \therefore \vec{E}=e^{-r} \sin \theta \cos 2 \phi \hat{a}_{r}-\frac{1}{r} e^{-r} \cos \theta \cos 2 \phi \hat{a}_{\theta}+\frac{2 e^{-r}}{r} \sin 2 \phi \hat{a}_{\phi}
\end{aligned}
$$

Example - 7

- Given that $\vec{E}=\left(3 x^{2}+y\right) \hat{a}_{x}+x \hat{a}_{y} k V / m$, find the work done in moving a $-2 \mu C$ charge from $(0,5,0)$ to $(2,-1,0)$ by taking the straight line path:
(a) $(0,5,0) \rightarrow(2,5,0) \rightarrow(2,-1,0)$
(b) $y=5-3 x$

Poisson's and Laplace's Equation

- From Gauss's Law: $\nabla \cdot \vec{E}=\frac{\rho_{v}}{\varepsilon_{0}}$
- We have: $E=-\nabla V$

$$
\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=-\frac{\rho_{v}}{\varepsilon_{0}}
$$

- If the medium under consideration contains no charge then:

$$
\nabla^{2} V=0
$$

Laplace's Equations
These formulations are extremely useful for determining the electrostatic potential V in regions with boundaries on which V is known, such as the regions between the plates of a capacitor with specified voltage difference across it.

Electric Dipole

- An electric dipole is formed when two point charges of equal magnitude but opposite signs are separated by a small distance \rightarrow a pretty useful configuration!!!
- In practical situation, the distance from the point of interest is much greater than the separation.
- The potential at point $P(r, \theta, \phi)$ is:

$$
V=\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]=\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{r_{2}-r_{1}}{r_{1} r_{2}}\right]
$$

- Since $r \gg d ; r_{1} r_{1}$, and r_{2} are almost parallel.

$$
\underbrace{r_{1}=r-\frac{d}{2} \cos \theta \quad r_{2}=r+\frac{d}{2} \cos \theta}_{\therefore r_{2}-r_{1}=d \cos \theta}
$$

- Furthermore: $\quad r_{1} r_{2} \approx r^{2}$

Electric Dipole (contd.)

- Since, $d \cos \theta=\bar{d} . \widehat{a_{r}}$

$$
\begin{aligned}
\Rightarrow V= & \frac{Q}{4 \pi \varepsilon_{0}} \frac{d \cos \theta}{r^{2}} \\
& \Rightarrow V=\frac{Q \bar{d} \cdot \dot{\omega}_{r}}{4 \pi \varepsilon_{0} r^{2}}
\end{aligned}
$$

$\mathrm{Q} \overline{\mathrm{d}}=\overline{\mathrm{p}}$ is the dipole moment

$$
\therefore V=\frac{\bar{p} \cdot \hat{a}_{r}}{4 \pi \varepsilon_{0} r^{2}}
$$

Dipole moment is directed from $-Q$ to $+Q$

- If the dipole center is not at the origin but at r^{\prime} then:

$$
V=\frac{\bar{p} \cdot\left(\bar{r}-\bar{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}^{\prime}\right|^{3}}
$$

- The electric field due to the dipole with center at the origin:

$$
\vec{E}=-\nabla V=-\left[\frac{\partial V}{\partial r} \hat{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \hat{a}_{\theta}\right]
$$

$$
\vec{E}=\frac{Q d \cos \theta}{2 \pi \varepsilon_{0} r^{3}} \hat{a}_{r}+\frac{Q d \sin \theta}{4 \pi \varepsilon_{0} r^{3}} \hat{a}_{\theta}
$$

Electric Dipole (contd.)

$$
\Rightarrow \vec{E}=\frac{Q d}{4 \pi \varepsilon_{0} r^{3}}\left(2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right)
$$

$$
\therefore \vec{E}=\frac{p}{4 \pi \varepsilon_{0} r^{3}}\left(2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right)
$$

$$
p=|\bar{p}|=Q d
$$

- It is important to notice that a point charge is a monopole and its \vec{E} varies inversely as r^{2} while its V varies inversely as r. For a dipole, the respective variations are $\vec{E} \propto \frac{1}{r^{3}}$ and $V \propto \frac{1}{r^{2}}$ while \vec{E} due to successive higher-order multipoles vary inversely as $r^{4}, r^{5}, r^{6}, \ldots$, and their corresponding V vary inversely as $r^{3}, r^{4}, r^{5}, \ldots .$.

Example - 8

- Point charges Q and $-Q$ are located at $\left(0, \frac{d}{2}, 0\right)$ and $\left(0,-\frac{d}{2}, 0\right)$. Show that at point (r, θ, ϕ), where $r \gg d$,

$$
V=\frac{Q d \sin \theta \sin \phi}{4 \pi \varepsilon_{0} r^{2}}
$$

- Find the corresponding \vec{E} as well.
- The dipole is oriented along y-axis. Therefore:
$V=\frac{Q d \sin \theta \sin \phi}{4 \pi \varepsilon_{0} r^{2}} \longmapsto \bar{p} \cdot \hat{a}_{r}=Q d \hat{a}_{y} \cdot \hat{a}_{r}=Q d \sin \theta \sin \phi \quad \therefore V=\frac{Q d \sin \theta \sin \phi}{4 \pi \varepsilon_{0} r^{2}}$
Now: $\vec{E}=-\nabla V \longrightarrow \vec{E}=-\frac{\partial V}{\partial r} \hat{a}_{r}-\frac{1}{r} \frac{\partial V}{\partial \theta} \hat{a}_{\theta}-\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{a}_{\phi}$
$\Rightarrow \vec{E}=\frac{Q d}{4 \pi \varepsilon_{0}}\left\{\frac{2 \sin \theta \sin \phi}{r^{3}} \hat{a}_{r}-\frac{\cos \theta \sin \phi}{r^{3}} \hat{a}_{\theta}-\frac{\cos \phi}{r^{3}} \hat{a}_{\phi}\right\}$

$$
\therefore \vec{E}=\frac{Q d}{4 \pi \varepsilon_{0} r^{3}}\left\{2 \sin \theta \sin \phi \hat{a}_{r}-\cos \theta \sin \phi \hat{a}_{\theta}-\cos \phi \hat{a}_{\phi}\right\}
$$

Equipotential Surfaces

- Equipotential surfaces are defined as surfaces over which the potential is constant.

$$
V(\bar{r})=\text { constant }
$$

- At each point on the surface, the electric field is perpendicular to the surface since the electric field, being the gradient of potential, does not have component along a surface of constant potential.
- We have seen that any charge on a conductor must reside on its surface. These charges would move along the surface if there were a tangential component of the electric field. The electric field must therefore be along the normal to the surface of a conductor. The conductor surface is, therefore, an equipotential surface.
- Electric field lines are perpendicular to equipotential surfaces (or curves) and point in the direction from higher potential to lower potential.
- In the region where the electric field is strong, the equipotentials are closely packed as the gradient is large.

Equipotential Surfaces (contd.)

Example - 9: Determine the equipotential surface for a point charge.

- Let the point charge q be located at the origin. The equation to the equipotential surface is given by:

$$
V(x, y . z)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\sqrt{x^{2}+y^{2}+z^{2}}}=V_{0}=\text { constant }
$$

Thus the surfaces are concentric spheres with the origin (the location of the charge) as the centre.

Equipotential Surfaces (contd.)

- The equipotential surfaces of an electric dipole is:

Importance of Equipotential Surfaces will be apparent when we discuss conducting bodies in \vec{E}

A typical use of field lines and equipotential surfaces is found in the diagnosis of human heart. The human heart beats in response to an electric potential difference across it. The heart can be characterized as a dipole with the field map similar to that of an electric dipole. Such a field map is useful in detecting abnormal heart position.

Energy Density in Electrostatic Field

- To determine the energy in an assembly of charges, let us first determine the amount of work needed to assemble them.
- Suppose, 3 point charges Q_{1}, Q_{2} and Q_{3} need to be assembled in empty space.

- No work is required to transfer Q_{1} from infinity to P_{1} as the space is free from any charge and thus without any electric field.
- The work done in transferring Q_{2} from infinity to P_{2} is $Q_{2} V_{21}$.
- The work done in bringing Q_{3} from infinity to P_{3} is $Q_{3}\left(V_{32}+V_{31}\right)$.
- Therefore:

$$
W_{E}=W_{1}+W_{2}+W_{3}
$$

$$
\left(W_{E}=0+Q_{2} V_{21}+Q_{3}\left(V_{31}+V_{32}\right)\right)
$$

Indraprastha Institute of

 Information Technology Delhi
Energy Density in Electrostatic Field (contd.)

- If the charges were positioned in reverse order, then:

$$
\left(W_{E}=W_{3}+W_{2}+W_{1}\right) \longmapsto\left(W_{E}=0+Q_{2} V_{23}+Q_{1}\left(V_{12}+V_{13}\right)\right)
$$

- Lets combine the two expressions to get:

$$
\left.2 W_{E}=Q_{1}\left(V_{12}+V_{13}\right)+Q_{2}\left(V_{21}+V_{23}\right)+Q_{3}\left(V_{31}+V_{32}\right)\right) \Longrightarrow\left(2 W_{E}=Q_{1} V_{1}+Q_{2} V_{2}+Q_{3} V_{3}\right.
$$

$$
\therefore W_{E}=\frac{1}{2}\left(Q_{1} V_{1}+Q_{2} V_{2}+Q_{3} V_{3}\right)
$$

where V_{1}, V_{2} and V_{3} are the total potentials at P_{1}, P_{2} and P_{3} respectively. In general, if there are n point charges then:

$$
\therefore W_{E}=\frac{1}{2} \sum_{k=1}^{n} Q_{k} V_{k}
$$

Energy Density in Electrostatic Field (contd.)

- For continuous charge distributions:

$$
W_{E}=\frac{1}{2} \int_{L} \rho_{l} V d l
$$

$$
W_{E}=\frac{1}{2} \int_{S} \rho_{S} V d S
$$

$$
W_{E}=\frac{1}{2} \int_{v} \rho_{v} V d v
$$

- We know from Maxwell's equation for electrostatics: $\rho_{v}=\nabla \cdot \vec{D}$
- Therefore:

$$
W_{E}=\frac{1}{2} \int_{v} \rho_{v} V d v=\frac{1}{2} \int_{v}(\nabla \cdot \vec{D}) V d v
$$

- We also know the relationship:

$$
\nabla . V \vec{D}=\vec{D} \cdot \nabla V+V(\nabla \cdot \vec{D})
$$

$$
\Rightarrow V(\nabla \cdot \vec{D})=\nabla . V \vec{D}-\vec{D} . \nabla V
$$

- Thus:

$$
W_{E}=\frac{1}{2} \int_{v}(\nabla \cdot V \vec{D}) d v-\frac{1}{2} \int_{v}(\vec{D} . \nabla V) d v
$$

Energy Density in Electrostatic Field (contd.)

- Application of Divergence Theorem leads to:

$$
\underbrace{W_{E}=\frac{1}{2} \oint_{S}(V \vec{D}) \cdot \overline{2} \oint_{S}(V \vec{D}) \cdot \overline{1} \int_{v}(\vec{D} \cdot \nabla V) d v 0}_{\text {For large surface }}
$$

- Thus:

$$
W_{E}=-\frac{1}{2} \int_{v}(\vec{D} . \nabla V) d v
$$

$$
\vec{E}=-\nabla V
$$

$$
W_{E}=\frac{1}{2} \int_{v}(\vec{D} \cdot \vec{E}) d v
$$

- We know that $\vec{D}=\varepsilon_{0} \vec{E}$:

$$
\therefore W_{E}=\frac{1}{2} \int_{v} \varepsilon_{0} E^{2} d v
$$

- Therefore energy density $w_{E}\left[\right.$ in $\left.\mathrm{J} / \mathrm{m}^{3}\right)$ is: $W_{E}=\frac{d W_{E}}{d \nu}=\frac{1}{2} \vec{D} \cdot \vec{E}=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{D^{2}}{2 \varepsilon_{0}}$

Example - 10

- If $V=\rho^{2} z \sin \phi$, calculate the energy within the region defined by $1<\rho<4,-2<z<2,0<\phi<\frac{\pi}{3}$

Example - 11

- Point charges $Q_{1}=1 n C, Q_{2}=-2 n C, Q_{3}=3 n C$, and $Q_{4}=-4 n C$ are positioned one at a time and in that order at $(0,0,0),(1,0,0),(0,0,-1)$, and $(0,0,1)$, respectively. Calculate the energy in the system after each charge is positioned.

Electrostatic Discharge (ESD)

- It refers to the sudden transfer of static charge between objects at different electrostatic potential.
- For example, the "zap" you feel while walking on a synthetic carpet and then touching a metal doorknob.
- Design of mechanism to protect electronic devices, systems, and equipments against the static electricity is extremely important.

Please go through the additional materials posted on course URL to know about ESD, its impact, and the associated issues and solutions

New Beginning

- We have been studying the electrostatics of free space (i.e., a vacuum).

But, the universe is full of stuff!

Q: Does stuff (material) affect our electrostatics knowledge?
A: ???

Convection and Conduction Current

- The current through a given area is the electric charge passing through the area per unit time.

$$
I=\frac{d Q}{d t}
$$

- Now, if the current ΔI flows through a planar surface ΔS then:

$$
\Rightarrow \Delta I=J \Delta S \quad \square \text { perpendicular to the surface }
$$

- For the case when current density is not normal to the surface:

$$
\Delta I=\vec{J} \cdot \overline{\Delta S}
$$

$$
I=\int_{S} \vec{J} \cdot \overline{d S}
$$

Total current
current " I " through S is the flux of current density \vec{J}

Convection and Conduction Current (contd.)

- "I" can be produced in three ways and therefore three kinds of current density exist: Convection Current Density, Conduction Current Density, and Displacement Current Density.
- The derived expression for current density is valid for any type of current.
- Convection current doesn't involve conductors and as a consequence doesn't satisfy Ohm's Law.
- It occurs when current flows through an insulating medium such as liquid, rarefied gas, or a vacuum.
- A beam of electrons in a vacuum tube, for example, is a convection current.
- For example, if there is a charge flow, of density ρ_{v}, at velocity $\vec{u}=u y \hat{a}_{y}$ then:

$$
\Delta I=\frac{\Delta Q}{\Delta t}=\rho_{v} \Delta S \frac{\Delta y}{\Delta t}
$$

Convection and Conduction Current (contd.)

$$
\Rightarrow \Delta I=\rho_{v} \Delta S \frac{\Delta y}{\Delta t}=\Delta S \rho_{v} u_{y}
$$

Y-directed
Generic

- Conduction current requires conductor.
- A conductor is characterized by a large number of free electrons that provide conduction current due to an applied electric field.
- The force due to an electric field \vec{E} on an electron with charge $-e$ is:

$$
\vec{F}=-e \vec{E}
$$

Convection and Conduction Current (contd.)

- Since the electron isn't free in space, it will not experience an average acceleration under the influence of electric field.
- Instead, it suffers constant collisions with the atomic lattice and drifts from one atom to another.
- If electron of mass m is moving in an electric field \vec{E} with an average drift velocity \vec{u} then:

$$
\frac{m \vec{u}}{\tau}=-e \vec{E} \quad \vec{u}=-\frac{e \tau}{m} \vec{E}
$$

τ is average time between collisions

- If there are n electrons per unit volume:

Example - 12

- For the current density $\vec{J}=10 z \sin ^{2} \phi \hat{a}_{\rho} A / m^{2}$, find the current through the cylindrical surface $\rho=2,1 \leq z \leq 5 \mathrm{~m}$.

$$
\begin{aligned}
& \overrightarrow{d S}=\rho d \phi d z \hat{a}_{\rho} \\
& \Rightarrow I=\left.\int_{\phi=0}^{2 \pi} \int_{z=1}^{5} 10 z \sin ^{2} \phi \rho d z d \phi\right|_{\rho=2}=\left.10(2)\left[\frac{z^{2}}{2}\right]_{1} \int_{0}^{5} \frac{\bar{J}}{2 \pi} \frac{1}{2}(1-\cos 2 \phi) d \phi \quad \int_{\phi=0}^{2 \pi} \int_{z=1}^{5} 10 z \sin ^{2} \phi \rho d z d \phi\right|_{\rho=2} \\
& \square I=240 \pi=754 \mathrm{~A}
\end{aligned}
$$

Example - 13

- A typical example of convective charge transport is found in the Van de Graaf generator where charge is transported on a moving belt from the base to the dome as shown in Figure.
- If a surface charge density $10^{-7} \mathrm{C} / \mathrm{m}^{2}$ is transported by the belt at a velocity of $2 \mathrm{~m} / \mathrm{s}$, calculate the charge collected in $5 s$. Take the width of the belt as 10 cm .
$I=\left(\rho_{S} w\right) u \quad Q=I t=\left(\rho_{S} w\right) u t \quad \Rightarrow Q=\left(10^{-7} \times 0.1\right) \times 2 \times 5$

$$
\therefore Q=100 n C
$$

[^0]: True
 False

