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• Gradient of a Scalar Field  
• Conservative Vector Field 
• Divergence of a Vector Field 
• Divergence Theorem  
• Curl of a Vector Field  
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The Gradient 

• Consider the topography of the 
Earth’s surface. 

We use contours of constant 
elevation—called topographic 
contours—to express on maps 
(a 2-dimensional graphic) the 

third dimension being elevation 
(i.e., surface height). 

Moreover, we can infer the direction of these slopes—a hillside might 
slope toward the south, or a cliff might drop-off toward the East. 

Thus, the slope of the Earth’s surface has both a magnitude (e.g., 
flat or steep) and a direction (e.g. toward the north). In other words, 

the slope of the Earth’s surface is a vector quantity! 
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• Thus, the surface slope at every point across some section of the Earth 
(e.g., Dwarka, Shimla, or Asia) must be described by a vector field! 

Q: Sure, but is there any 
way to calculate this vector 

field? 

A: Yes, there is a very easy way, called the gradient. 

The Gradient (contd.) 
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The Gradient (contd.) 
• Say the topography of some small section of the earth’s surface can be 

described as a scalar function ℎ(𝑥, 𝑦), where ℎ represents the height 
(elevation) of the Earth at some point denoted by x and y. e.g.: 

• Now, we take the gradient of scalar 
field ℎ(𝑥, 𝑦) which is denoted by: ∇h(r ) 
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• The result of taking the gradient of a scalar field is a vector field, i.e.: 

Q: So just what is this resulting vector 
field, and how does it relate to 

scalar field ℎ(𝑟 )?? 

For our example here, 
taking the gradient of 

surface elevation h(x,y) 
results in this vector 

field: 

The Gradient (contd.) 

∇h 𝑟 =  𝐴 (𝑟 ) 
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• To see how this vector field relates to the surface height ℎ(𝑥, 𝑦), let’s place 
the vector field on top of the topographic plot: 

Q: It appears that the vector 
field indicates the slope of 
the surface topology—both 
its magnitude and direction! 

A: That’s right! The gradient 
of a scalar field provides a 
vector field that states how 
the scalar value is changing 
throughout space—a 
change that has both a 
magnitude and direction. 

The Gradient (contd.)  
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• It is a bit more “natural” and instructive for our example to examine the 

opposite of the gradient of h(x,y) (i.e., 𝐴 𝑟 = −∇h 𝑟 ). In other words, 
to plot the vectors such that they are pointing in the “downhill” direction. 

Note these important facts: 

• The vectors point in the 
direction of maximum change 
(i.e., they point straight down 
the mountain!). 

• The vectors always point 
orthogonal to the 
topographic contours (i.e., the 
contours of equal surface 
height). 

The Gradient (contd.)  
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• Now, it is important to understand that the scalar fields we will consider 
will not typically describe the height or altitude of anything! Thus, the 
slope provided by the gradient is more mathematically “abstract”, in the 
same way we speak about the slope (i.e., derivative) of some curve. 

The Gradient (contd.) 

• For example, consider the relative humidity across USA—a scalar function 
of position.  

If we travel in some 
directions, we  find 
that the humidity 
quickly changes. 

But if we travel in 
other directions, 

the humidity 
doesn’t change at 

all. 
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Q: Say we are located at some point, how can we determine the direction 
where we will experience the greatest change in humidity ?? Also, how can 
we determine what that change will be ?? 
A: The answer to both questions is to take the gradient of the scalar field 
that represents humidity! 

The Gradient (contd.) 

• If g 𝑟  is the scalar field that represents the humidity across USA, then 

we can form a vector field 𝐴 𝑟  by taking the gradient of g 𝑟 : 

𝐴 𝑟 = ∇g 𝑟   

This vector field indicates the direction of greatest humidity 
change (i.e., the direction where the derivative is the 

largest), as well as the magnitude of that change, at every 
point in the USA! 
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𝐴 𝑟 = ∇g 𝑟   

The Gradient (contd.) 

This is likewise true for any scalar field. The gradient of a scalar field 
produces a vector field indicating the direction of greatest change (i.e., 

largest derivative) as well as the magnitude of that change, at every 
point in space. 
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The Gradient Operator in Coordinate Systems 

• Now let’s consider the gradient operator in the other coordinate systems. 

NO!! The above equation is not correct! 

• For the Cartesian coordinate system, 
the Gradient of a scalar field is 
expressed as: 

( ) ( ) ( )
ˆ ˆ ˆ( ) x y z

g r g r g r
g r a a a

x y z

  
   

  

Right ?? 

( ) ( ) ( )
ˆ ˆ ˆ( ) r

g r g r g r
g r a a a

r
 

 

  
   

  

• Pfft! This is easy! The gradient 
operator in the spherical coordinate 
system is: 

• Instead, for spherical 
coordinates, the gradient is 
expressed as: 

( ) 1 ( ) 1 ( )
ˆ ˆ ˆ( )

sin
r

g r g r g r
g r a a a

r r r
 

  

  
   

  

• And for the cylindrical coordinate 
system we likewise get: 

( ) 1 ( ) ( )
ˆ ˆ ˆ( ) z

g r g r g r
g r a a a

z
 

  

  
   

  
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The Conservative Vector Field 

• A conservative field has the interesting property 
that its line integral is dependent on the beginning 
and ending points of the contour only! In other 
words, for the two contours: 

1 2

( ). ( ).
C C

C r dl C r dl 

PA 

PB 

C2 

C1 

• Of all possible vector fields 𝐴 𝑟 , there is a subset of 
vector fields called conservative fields. A conservative 
vector field is a vector field that can be expressed as the 
gradient of some scalar field g 𝑟 : 

𝐶 𝑟 = Δg 𝑟   

In other words, the gradient of any scalar field always results in a 
conservative field! 

• We therefore say that the line integral of a conservative field is path 
independent. 
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• This path independence is evident 
when considering the integral identity: 

   ( ). B A

C

g r dl g r r g r r    

• For one dimension, the above identity 
simply reduces to the familiar expression: 

   
( )b

a

x

b a

x

g x
dx g x x g x x

x


   



The Conservative Vector Field (contd.) 

position vector 𝑟𝐵  denotes the ending point (PB) of contour C, and 𝑟𝐴  
denotes the beginning point (PA). 𝑔 𝑟 = 𝑟𝐵  denotes the value of scalar 
field 𝑔 𝑟  evaluated at the point denoted by 𝑟𝐵 , and 𝑔 𝑟 = 𝑟𝐴  denotes 
the value of scalar field 𝑔 𝑟  evaluated at the point denoted by 𝑟𝐴 . 

• Since every conservative field can be written in terms of the gradient of a 
scalar field, we can use this identity to conclude: 

( ). ( ).
C C

C r dl g r dl      ( ). B A

C

C r dl g r r g r r    

Consider then what happens then if we integrate over a closed contour. 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Q: What the heck is a closed contour ?? 

• Integration over a closed 
contour is denoted as: 

( ).
C

A r dl

The Conservative Vector Field (contd.) 

PA 
PB 

Closed 
Contour C 

A: A closed contour’s beginning and 
ending is the same point! e.g., 

A contour that is not closed 
is referred to as an open 

contour. 

• The integration of a conservative field over a closed contour is therefore: 

( ). ( ).
C C

C r dl g r dl      B Ag r r g r r    0

This result is due to the fact that 𝑟𝐴  
= 𝑟𝐵  

    B Ag r r g r r  
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• Let’s summarize what we know about a conservative vector field: 

1. A conservative vector field can always be expressed as the gradient of a 
scalar field. 

2. The gradient of any scalar field is therefore a conservative vector field. 
3. Integration over an open contour is dependent only on the value of 

scalar field 𝑔 𝑟  at the beginning and ending points of the contour (i.e., 
integration is path independent). 

4. Integration of a conservative vector field over any closed contour is 
always equal to zero. 

The Conservative Vector Field (contd.) 
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Example – 1  

• Consider the conservative vector field:  2 2( )A r x y z 

• Evaluate the contour integral: ( ).
C

A r dl

and contour C is: 
PA 

PB 

C 

where  2 2( )A r x y z 

• The beginning of contour C is the point denoted as: ˆ ˆ ˆ3 4A x y zr a a a  

• while the end point is denoted with position vector: ˆ ˆ3 2B x zr a a  

Note that ordinarily, this would be an impossible 
problem for us to do! 
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• we note that vector field 𝐴 𝑟  is conservative, therefore: 

( ). ( ).
C C

A r dl g r dl      B Ag r r g r r   

• For this problem, it is evident that:  2 2( )g r x y z 

• Therefore, 𝑔 𝑟 = 𝑟𝐴  is the scalar field evaluated at 𝑥 = 3, 𝑦 = −1, 𝑧 = 4; 
while 𝑔 𝑟 = 𝑟𝐵  

is the scalar field evaluated at at 𝑥 = −3, 𝑦 = 0, 𝑧 = −2. 

   2 2(3) ( 1) 4 40Ag r r         2 2( 3) (0) 2 18Bg r r      

Example – 1 (contd.) 

Therefore: 

    2 2( 3) (0) 2 18Bg r r       18 40 58    
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The Divergence of a Vector Field 

where the surface S is a closed surface that completely surrounds 
a very small volume Δv at point 𝑟 , and 𝑑𝑠 points outward from the 

closed surface. 

• The divergence indicates the amount of vector field 𝐴 𝑟  that is 
converging to, or diverging from, a given point. 

• For example, consider the vector fields in the region of a specific 
point: 

∆𝑣 ∆𝑣 

∇.𝐴 (𝑟 ) < 0 ∇.𝐴 (𝑟 ) > 0 

• The mathematical definition of divergence is: 
0

( ).

. ( ) lim S

v

A r ds

A r
v 

 



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• The field on the left is converging to a point, and therefore the divergence 
of the vector field at that point is negative. Conversely, the vector field on 
the right is diverging from a point. As a result, the divergence of the vector 
field at that point is greater than zero. 

For these vector fields, the surface integral is zero. Over some portions of the 
surface, the component is positive, whereas on other portions, the  

component is negative. However, integration over the entire surface is equal 
to zero—the divergence of the vector field for this region is zero. 

The Divergence of a Vector Field (contd.) 

∇.𝐴 (𝑟 ) = 0 ∇.𝐴 (𝑟 ) = 0 

∆v ∆v 

• Lets consider some other vector fields in the region of a specific point: 
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• The divergence of a vector 
field results in a scalar field 
(divergence) that is positive in 
some regions in space, 
negative in other regions, and 
zero elsewhere. 

• For most physical problems, 
the divergence of a vector 
field provides a scalar field 
that represents the sources of 
the vector field. 

The Divergence of a Vector Field (contd.) 

• For example, consider the following 

2-D vector field 𝐴 𝑥, 𝑦  plotted on 
the x-y plane: 

We can take the divergence of this vector field, resulting in the 

scalar field 𝑔 𝑥, 𝑦 = ∇. 𝐴 𝑥, 𝑦 .  
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The Divergence of a Vector Field (contd.) 

Both plots indicate that the divergence is largest in the vicinity of point 
x=-1, y=1. However, notice that the value of g(x,y) is non-zero (both 

positive and negative) for most points (x,y). 

• Plot of field  𝑔 𝑥, 𝑦 = ∇. 𝐴 𝑥, 𝑦  on the xy-plane will look as: 
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• Consider now this vector field: 

The Divergence of a Vector Field (contd.) 

• The divergence of this vector 
field is the scalar field. 
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• Combining the vector field and 
scalar field plots, we can examine 
the relationship between each. 

The Divergence of a Vector Field (contd.) 

• Look closely! Although the 
relationship between the scalar 
field and the vector field may 
appear at first to be the same as 
with the gradient operator, the 
two relationships are very 
different. 

Remember: 
• gradient produces a vector field that indicates the change in the original 

scalar field, whereas: 
• divergence produces a scalar field that indicates some change (i.e., 

divergence or convergence) of the original vector field. 



Indraprastha Institute of 

Information Technology Delhi ECE230 

• The divergence of this vector field is interesting—it steadily increases as we 
move away from the y-axis. 

The Divergence of a Vector Field (contd.) 

ˆ( ) xF r xa
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• Yet, the divergence of this vector field produces a scalar field equal to 
one—everywhere (i.e., a constant scalar field)! 

The Divergence of a Vector Field (contd.) 

. 0 1F x
x y

 
   

  HA #1: Part-1 
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• Likewise, note the divergence of the following vector fields—it is zero at 
all points (x, y); 

The Divergence of a Vector Field (contd.) 

Although the examples we have examined here were all 2-D, 
keep in mind that both the original vector field, as well as the scalar 

field produced by divergence, will typically be 3-D! 

ˆ ˆ
x yF ya xa  

   . 0F y x
x y

 
    

 

HA #1: Part-2 
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The Divergence in Coordinate Systems 

• Consider now the divergence of vector fields expressed with our 
coordinate systems: 

Cartesian 

Cylindrical 

Spherical 

     
. ( )

yx z
A rA r A r

A r
x y z

 
   

  

      1 1
. ( ) z

A r A r A r
A r

z

 


   

   
    

    

       
2

2

sin1 1 1
. ( )

sin sin

rr A r A r A r
A r

r r r r

 


   

   
    

    

Note that, as with the gradient expression, the divergence expressions 
for cylindrical and spherical coordinate systems are more complex than 

those of Cartesian. Be careful when you use these expressions! 
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The Divergence Theorem 

• Recall we studied volume integrals of the form: ( )
v

g r dv

• It turns out that any and every scalar field can be 
written as the divergence of some vector field, i.e.: ( ) . ( )g r A r

• Therefore we can equivalently write any volume 
integral as: 

. ( )
v

A r dv

• The divergence theorem states that this integral 
is equal to: 

. ( ) ( ).
v S

A r dv A r ds  

where S is the closed surface that completely surrounds volume v, and 
vector 𝑑𝑠 points outward from the closed surface. For example, if 

volume v is a sphere, then S is the surface of that sphere. 

The divergence theorem states that the volume integral 
of a scalar field can be likewise evaluated as a surface 

integral of a vector field! 
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• What the divergence theorem indicates is 
that the total “divergence” of a vector 
field through the surface of any volume is 
equal to the sum (i.e., integration) of the 
divergence at all points within the 
volume. 

The Divergence Theorem (contd.) 

• In other words, if the vector field is diverging from some point in the volume, it 
must simultaneously be converging to another adjacent point within the volume—
the net effect is therefore zero! 

• Thus, the only values that make any difference in the volume integral are the 
divergence or convergence of the vector field across the surface surrounding the 
volume—vectors that will be converging or diverging to adjacent points outside 
the volume (across the surface) from points inside the volume. Since these points 
just outside the volume are not included in the integration, their net effect is non-
zero! 
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The Curl of a Vector Field 

Say ∇ × 𝐴 𝑟 = 𝐵(𝑟 ). The mathematical definition of Curl is given as: 

0

( ).

( ) lim iC

i
s

i

A r dl

B r
s 




 This rather complex equation requires 
some explanation ! 

• 𝐵𝑖(𝑟 ) is the scalar component of vector 𝐵 𝑟  in the direction defined by 
unit vector 𝑎 𝑖 (e.g., 𝑎 𝑥 , 𝑎 ρ , 𝑎 θ ).  

• The small surface Δsi is centered at point 𝑟 , and oriented such that it is 
normal to unit vector 𝑎 𝑖. 

• The contour Ci is the closed contour that surrounds surface Δsi. 

𝑎 𝑖  

Ci 

𝑟  

Note that this derivation must be 
completed for each of the three 

orthonormal base vectors in 
order to completely define 

∇ × 𝐴 𝑟 = 𝐵(𝑟 ).  
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The Curl of a Vector Field (contd.) 

Q: What does curl tell us ? 

A: Curl is a measurement of the circulation of vector field 𝐴 𝑟  around point 𝑟 . 

• If a component of vector field 𝐴 𝑟  is pointing in the direction 𝑑𝑙  at every 
point on contour Ci (i.e., tangential to the contour). Then the line integral, and 
thus the curl, will be positive. 

• If, however, a component of vector field 𝐴 𝑟  points in the opposite direction 
(−𝑑𝑙 ) at every point on the contour, the curl at point 𝑟  will be negative. 

𝐵𝑖 > 0 𝐵𝑖 < 0 
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• following vector fields will result in a curl with zero value at point 𝑟 : 

The Curl of a Vector Field (contd.) 

𝐵𝑖 = 0 
𝐵𝑖 = 0 

• Generally, the curl of a vector field result in another vector field whose 
magnitude is positive in some regions of space, negative in other regions, 
and zero elsewhere.  

• For most physical problems, the curl of a vector field provides another 
vector field that indicates rotational sources (i.e., “paddle wheels” ) of the 
original vector field. 
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x 

y 

• For example, consider this vector field 𝐴 𝑟 : 

The Curl of a Vector Field (contd.) 
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• If we take the curl of 𝐴 𝑟 , we get a vector field which points in the 
direction 𝑎 𝑧 at all points (x, y). The scalar component of this resulting 
vector field (i.e., 𝐵𝑧(𝑟 )) is: 

x 

y 

The Curl of a Vector Field (contd.) 
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x 

y 

z 

The Curl of a Vector Field (contd.) 
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• The relationship between the original vector field 𝐴 𝑟  and its resulting 
curl perhaps is best shown when plotting both together: 

x 

y 

Note this scalar component 
is largest in the region near 
point x=-1, y=1, indicating a 
“rotational source” in this 

region. This is likewise 
apparent from the original 

plot of vector field 𝐴 𝑟 . 

The Curl of a Vector Field (contd.) 
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Curl in Coordinate Systems 
• Consider now the curl of vector fields expressed using our coordinate 

systems. 

( ) ( )( ) ( ) ( ) ( )
ˆ ˆ ˆ( )

y yz z x x
x y z

A r A rA r A r A r A r
A r a a a

z y x z y x

        
                   

 
( ) ( ) ( )1 ( ) ( ) 1 1

ˆ ˆ ˆ( ) ( )z z
z

A r A r A rA r A r
A r a a A r a

z z

  

  
      

         
           

          

   

 

1 1 ( ) 1 ( ) 1
ˆ ˆ( ) sin ( ) ( )

sin sin sin

1 1 ( )
ˆ( )

r
r

r

A r A r
A r A r a rA r a

r r r r r

A r
rA r a

r r r


  

 


     



      
             

  
    

Yikes! These expressions are very complex. Precision, organization, and 
patience are required to correctly evaluate the curl of a vector field ! 
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Stokes’ Theorem 

• Consider a vector field  𝐵 𝑟  where: ( ) ( )B r A r

• Say we wish to integrate this vector field 
over an open surface S: 

( ). ( ).
S S

B r dS A r dS  

• We can likewise evaluate this 
integral using Stokes’ Theorem: 

( ). ( ).
S C

A r dS A r dl  

• In this case, the contour C is a 
closed contour that surrounds 
surface S. The direction of C is 
defined by 𝑑𝑠 and the right -
hand rule. In other words C 
rotates counter clockwise 
around 𝑑𝑠. e.g., 

C 

𝑑𝑠 
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• Stokes’ Theorem allows us to 
evaluate the surface integral of a curl 
as a contour integral ! 

• Stokes’ Theorem states that the 
summation (i.e., integration) of the 
circulation at every point on a 
surface is simply the total 
“circulation” around the closed 
contour surrounding the surface. 

Stokes’ Theorem (contd.) 

In other words, if the vector field is rotating counter clockwise 
around some point in the volume, it must simultaneously be 

rotating clockwise around adjacent points within the 
volume—the net effect is therefore zero!  
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• Thus, the only values that make any difference in the surface integral is 
the rotation of the vector field around points that lie on the surrounding 
contour (i.e., the very edge of the surface S). These vectors are likewise 
rotating in the opposite direction around adjacent points—but these 
points do not lie on the surface (thus, they are not included in the 
integration). The net effect is therefore non-zero! 

• Note that if S is a closed surface, then there is no contour C that exists! In 
other words: 

( ). ( ). 0
S C

A r dS A r dl   

Therefore, integrating the curl of any vector field over a closed surface 
always equals zero. 

Stokes’ Theorem (contd.) 
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The Curl of Conservative Fields 

• Recall that every conservative field can be written as the 
gradient of some scalar field: 

( ) ( )C r g r

• Consider now the curl of a conservative field: ( ) ( )C r g r 

• Recall that if 𝐶 (𝑟 ) is expressed using the Cartesian coordinate system, the 

curl of 𝐶 (𝑟 ) is: 
ˆ ˆ ˆ( )

y yz x z x
x y z

C CC C C C
C r a a a

y z z x x y

        
                   

• Likewise, the gradient of 𝑔(𝑟 ) is: ˆ ˆ ˆ( )
y yz x z x

x y z

C CC C C C
C r a a a

y z z x x y

        
                   

Therefore: ( )
( )x

g r
C r

x






( )
( )y

g r
C r

y






( )
( )z

g r
C r

z






• Combining these two results: 
2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) x y z

g r g r g r g r g r g r
g r C r a a a

y z z y z x x z x y y x

          
            

                
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The Curl of Conservative Fields (contd.) 

• We know: 

2 2( ) ( )g r g r

y z z y

 


   

• each component of ∇ × ∇𝑔(𝑟 ) is then equal to 
zero, and we can say: 

( ) ( ) 0g r C r  

The curl of every conservative field is equal to zero ! 

Q: Are there some non-conservative fields whose curl is also equal to zero? 
A: NO! The curl of a conservative field, and only a conservative field, is equal 
to zero. 

• Thus, we have way to test whether some vector field 𝐴 𝑟  is conservative: 
evaluate its curl! 

1. If the result equals zero—the vector field is conservative. 
2. If the result is non-zero—the vector field is not conservative. 
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• Let’s again recap what we’ve learnt about conservative fields: 

The Curl of Conservative Fields (contd.) 

1. The line integral of a conservative field is path independent. 
2. Every conservative field can be expressed as the gradient of some 

scalar field. 
3. The gradient of any and all scalar fields is a conservative field. 
4. The line integral of a conservative field around any closed contour is 

equal to zero. 
5. The curl of every conservative field is equal to zero. 
6. The curl of a vector field is zero only if it is conservative. 
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The Solenoidal Vector Field 

1. We know that a conservative vector field 𝐶 (𝑟 ) can be 
identified from its curl, which is always equal to zero: 

( ) 0C r 

• Similarly, there is another type of vector field 𝑆 (𝑟 ), called a 
solenoidal field, whose divergence always equals  zero: 

. ( ) 0S r 

Moreover, it should be noted that only solenoidal vector 
have zero divergence! Thus, zero divergence is a test for 

determining if a given vector field is solenoidal. 

We sometimes refer to a solenoidal field 
as a divergenceless field. 
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2. Recall that another characteristic of a conservative vector field is that it 

can be expressed as the gradient of some scalar field (i.e., 𝐶 (𝑟 )=∇𝑔(𝑟 ) ). 

The Solenoidal Vector Field (contd.) 

• Solenoidal vector fields have a similar characteristic! 
Every solenoidal vector field can be expressed as the curl 

of some other vector field (say 𝐴 (𝑟 )). 

( ) ( )S r A r

• Additionally, it is important to note that only solenoidal vector fields can 
be expressed as the curl of some other vector field.  

The curl of any vector field always results in a solenoidal field! 

• Note if we combine these two previous equations, we get a vector 
identity: 

. ( ) 0A r 
a result that is always true for any 

and every vector field 𝐴 (𝑟 ). 
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The Solenoidal Vector Field (contd.) 

3. Now, let’s recall the divergence theorem: . ( ) ( ).
v S

A r dv A r ds  

• If the vector field 𝐴 (𝑟 ) is solenoidal, we 
can write this theorem as: 

. ( ) ( ).
v S

S r dv S r ds  

But  the divergence of a solenoidal field is zero: . ( ) 0S r 

As a result, the left side of the divergence 
theorem is zero, and we can conclude that: 

( ). 0
S

S r ds 

In other words the surface integral of any and every solenoidal 
vector field across a closed surface is equal to zero. 

• Note this result is analogous to evaluating a line 
integral of a conservative field over a closed contour: 

( ). 0
C

C r dl 
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• Lets summarize what we know about solenoidal vector fields: 

The Solenoidal Vector Field (contd.) 

1. Every solenoidal field can be expressed as the curl of some other vector 
field. 

2. The curl of any and all vector fields always results in a solenoidal vector 
field. 

3. The surface integral of a solenoidal field across any closed surface is 
equal to zero. 

4. The divergence of every solenoidal vector field is equal to zero. 
5. The divergence of a vector field is zero only if it is solenoidal. 
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HA #1: Part-3 

• Find the divergence of 𝐹 = 2𝑥𝑧𝑎 𝑥 − 𝑥𝑦𝑎 𝑦 − 𝑧𝑎 𝑧 

HA #1: Part-4 

• Find the divergence of 𝐹 = 𝑥𝑎 𝑥 

HA #1: Part-5 

• Find the divergence of 𝐹 = 𝑥𝑎 𝑥 + 𝑦𝑎 𝑦 

Also use MATLAB to demonstrate 2-D and 3-D plots of the vector and 
the divergence operation.    

Also use MATLAB to demonstrate 2-D and 3-D plots of the vector and 
the divergence operation.    

Also use MATLAB to demonstrate 2-D and 3-D plots of the vector and 
the divergence operation.    
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HA #1: Part-6 

• Find the divergence of 𝐹 = −𝑥𝑎 𝑥 − 𝑦𝑎 𝑦 

Also use MATLAB to demonstrate 2-D and 3-D plots of the vector and 
the divergence operation.    
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Some Important Identities  

 U V U V     UV U V V U     1n nV nV V  

 1 2 1 2. . .U U U U   

 A B A B     . 0A     0V  
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Miscellaneous 
• Let us consider the generic Maxwell’s equations: 

. vD  
B

E
t


  


. 0B 

D
H J

t


  



• 𝐸 and 𝐷 are the electric field intensity and electric flux density 
respectively 

• 𝐵 and 𝐻 are the magnetic field intensity and magnetic flux density 
respectively 

• Under static conditions, none of the quantities appearing above are 

functions of time (i.e., 
𝜕

𝜕𝑡
= 0) → this happens when all charges are 

permanently fixed in space, or, if they move, they do so at steady rate so 

that ρv and 𝐽  are constant in time.  

. vD   0E  . 0B  H J 

• Under the static conditions we get: 
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Miscellaneous (contd.) 

. vD   0E  . 0B  H J 

Electric and Magnetic fields become decoupled under 
static conditions 

Enables us to study electricity and magnetism as distinct separate 
phenomena 

We refer the study of electric and magnetic phenomena 
under static conditions as electrostatics and magnetostatics  

The experience gained through studying electrostatics and 
magnetostatics phenomena will prove invaluable in tackling the more 

involved concepts which deal with time-varying fields  
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Miscellaneous (contd.) 

• Oh yes!  We do not study electrostatics just as a prelude to the study of 
time-varying fields.  

• Electrostatics is an important concept in its own right.  
• Many electronics devices and systems are based on the principles of 

electrostatics. 
• Examples include: x-ray machines, oscilloscopes, ink-jet electrostatic 

printers, liquid crystal displays, copy machines, micro-electro-mechanical 
switches (MEMS), accelerometers, and solid-state-based control devices 
etc. 

• Electrostatic principles also guide the design of medical diagnostic sensors, 
such as the electrocardiogram, which records the heart’s pumping pattern, 
and electroencephalogram, which records brain activity.  
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Miscellaneous (contd.) 

Q: I see !  Electrostatics is important as a 
distinct phenomena but not Magnetostatics. 
Right?   

A: that is not correct! Magnetostatics is equally important and this 
concept is utilized in design of systems such as Loudspeakers, Door Bells, 

Magnetic Relays, Maglev Trains etc.  


