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* Coordinate Transformations

* Base Vectors

* Position Vector

e Contours (Cartesian, Cylindrical, and Spherical)
e Surfaces (Cartesian, Cylindrical, and Spherical)
* Volume
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 Say we know the location of a point, or the description of some scalar
field in terms of Cartesian coordinates (e.g., T (x, Y, z)).

« What if we decide to express this point or this scalar field in terms of
cylindrical or spherical coordinates instead?

 We see that the coordinate values z, p, r, and @ are all variables of a right
triangle! We can use our knowledge of trigonometry to relate them to
each other.

* In fact, we can completely derive the relationship between all six
independent coordinate values by considering just two very important
right triangles!

* Hint: Memorize these 2 triangles!!!
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Coordinate Transformations (contd.)

Right Triangle #1

A<

> Y

Z=rxC0S0=pxcotl=r’—p°

p=rxsinf=zxtanf=~r’-z°

[r =\/p° +12° = pxcosechd = zxsece]

e ]
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Coordinate Transformations (contd.)

Right Triangle #

2

Y
A

A

[X:pxCOS¢:yxCOt¢=\/ 2—y2]
Y [yszsin¢=x><tan¢:\/ 2—x2]

X

{pa/x2 +y° =XxSecd= y><cosec¢]

o 3]
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Coordinate Transformations (contd.)

Combining the results of the two triangles allows us to write
each coordinate set in terms of each other

e (Cartesian and Cylindrical e (Cartesian and Spherical

/p: /x2+y2\ r=yx2+y?+72

—tant Y 0 =cos™ :

¢ = tan {x} cos [\/xz_l_yz_I_Zz]
Z=1

- / ¢:tan{l}
ﬁ X

X=pXxC0S¢ @

X =1rxSInfxCoS¢g

y=pxsing

=rxSin@ xSsi
Sy y=rxsin@xsing

Z=rXxC0SH
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 Cylindrical and Spherical

/r— 2+22\
p=rxsing NP
p=¢ ) |o-tan? 3}
Z=rXxC0S@ Z
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Base Vectors

Q: We know that vector
quantities (either discrete or field)
have both magnitude and
direction. But how do we specify
direction in 3-D space? Do we use
coordinate values (e.g., x,y, 2 )??

CA:ltis very important that you understand that coordinates |
only allow us to specify position in 3-D space. They cannot be
used to specify direction!

. J

(" )

The most convenient way for us to specify the direction of a vector
qguantity is by using a well-defined orthonormal set of vectors known as
L base vectors. D
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Base Vectors (contd.)

* Recall that an orthonormal set of unity vectors, say a,, d,, and a; have
the following properties:

*4 Each vector is a unit vector: a,.a, = a,.a, = a;.a; =1
/

Each vector is mutually orthogonal: a,.a, = a,.a; = d;.a,=0

. /Additionally, a set of base vectors a,, d,, and a; must be arranged such
that:

Pa Ly A\ A A\ Pa

a, X a, = ds a, X a; = a, agxaITaz

\

An orthonormal set with this property is
known as a right handed system.

All base vectors a,, a,, and a; must form a
right-handed, orthonormal set.
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Base Vectors (contd.)

Recall that we use unit vectors to define direction. Thus, a set of base
vectors define three distinct directions in our 3-D space!

- NN

@ But, what three directions do we use?? | remember, there are z%
infinite number of possible orientations of an orthonormal set!!

A: We will define several systematic, mathematically precise methods for
defining the orientation of base vectors. Generally speaking, we will find
that the orientation of these base vectors will not be fixed, but will in fact
@ry with position in space (i.e., as a function of coordinate values)! /




1D

Indraprastha Institute of
b ECE230

Information Technology Delhi

Base Vectors (contd.)

e Essentially, we will define at each and every point in space a different set
of base vectors, which can be used to uniquely define the direction of any
vector quantity at that point! 4T o .

/g; Good golly! Defining a different set of base

vectors for every point in space just seems
confusing. Why can’t we just fix a set of base
vectors such that their orientation is the same
\_ at all points in space?

f& We will in fact study one method for defining base vectors that does in
fact result in an orthonormal set whose orientation is fixed—the same at
q all points in space (Cartesian base vectors).
However, we will study two other methods where the orientation of base
vectors is different at all points in space (spherical and cylindrical base
vectors). We use these two methods to define base vectors because for
many physical problemes, it is actually easier and wiser to do so!
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Base Vectors (contd.)

For example, consider how we
define direction on Earth:
North/South, East/West, Up/Down.

Each of these directions can be
represented by a unit vector, and
the three unit vectors together
form a set of base vectors.

Think about, however, how these
base vectors are oriented! Since we
live on the surface of a sphere (i.e.,
the Earth), it makes sense for us to
orient the base vectors with respect

to the spherical surface.
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Base Vectors (contd.)

What this means, of course, is that
each location on the Earth will
orient its “base vectors”
differently. This orientation is thus
different for every point on
Earth—a method that makes
perfect sense!
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Cartesian Base Vectors

e As the name implies, the Cartesian base vectors are related to the
Cartesian coordinates.

* Specifically, the unit vector @, points in the direction of increasing x. In
other words, it points away from the y-z (x=0) plane.

* Similarly, @, and a, point in the direction of increasing y and z,

y
respectively.

Z/\

/It was said that the directions oh
base vectors generally vary with
location in space—Cartesian base
vectors are the exception! Their
v directions are the same regardless
A \ of where you are in space. /

Q

v

Q
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* Having defined an orthonormal set of base vectors, we can express any
vector in terms of these unit vectors as:

[/T = A4, +A,d, + Az@]

* Note therefore that any vector can be written as a sum of three vectors!

e Each of these three vectors point in one of the three orthogonal
directions @, a,,, and @,.

* The magnitude of each of these three vectors are determined by the
scalar values A, A, and A,.

* Thevalues A, A, and A, are called the scalar components of vector A.

* ThevectorsAa,, Ad,andA,a, are called the vector components of A.

XX

Q: What the heck are scalar components A,, A, and A, and how do we
determine them ??

[A: Use the dot product to evaluate the expression above!]
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Vector Expansion using Base Vectors (contd.)

* Begin by taking the dot product of the above expression with unit vector a,
A, =g +AG+Ad).d, ~ =) A=Ag
* In other words, the scalar component A is just the value of the dot
product of vector A and base vector a,. Similarly, we find that:
Ay:‘éf'd\y A,=A4.a,

 Thus, any vector can be expressed specifically as:

[ff = (A.a)a, + (Ad.a)a, + (A @)@]
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Vector Expansion using Base Vectors (contd.)

* For example, consider a vector K, along with two different sets of
orthonormal base vectors:

— A

A

Q

A, =A4.G, =20 A, =A4.d =00
A, =A4.d,=15 A, =A.d,=25
A =A.d, =0.0 A, =A4A.4, =00

* Using the first set of base vectors, we can write the vector A as:

[/T = A, G, + A,@, + A,@, =2.0G, + 1.5@]
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Vector Expansion using Base Vectors (contd.)

* using the second set, we find that: [/T =A@ + A,d, + Ad; = 2_5@2]

* |tisveryimportant to realize that: 4 =2.0a, + 1.5, = 2.5a,

In other words, both expressions represent exactly the same
vector! The difference in the representations is a result of using

different base vectors, not because vector A is somehow
\_ “different” for each representation. )
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Spherical Base Vectors (contd.)

Spherical base vectors are the “natural” base vectors of a sphere.

@, points in the direction of increasing r. In other words @, points
away from the origin. This is analogous to the direction we call up.

@, points in the direction of increasing 6. This is analogous to the
direction we call south.

&q) a points in the direction of increasing ¢. This is analogous to the
direction we call east.

A K
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Spherical Base Vectors (contd.)

IMPORTANT NOTE: The directions of spherical base vectors are dependent on
position. First you must determine where you are in space (using coordinate

values), then you can define the directions of @,, 4, and .
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Reminder: Cartesian base vectors are special, in that their directions are
independent of location—they have the same directions throughout all space.

* Thus, it is prudent to define spherical base vectors in terms of Cartesian
base vectors. It can be shown that:

a,..a, =sinB cos @ Qy.a, = cosB cosP ay. a, = —sin
a,..a, =sinb sing ay.a, = cosb sin¢ a, a, = cosd
a,..a, = cos0 ay.a, = —sin0 Ay @, =
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Spherical Base Vectors (contd.)

* any vector A can be written as: 4 = (/T.c?

* Therefore, we can write unit vector @, as:
g( Q, = (4.d)d, + (&.4)d, + (@, &)d, |

c’l}=sin@coscl)d\x+sinesincl)d;,+cos€)c’l\zl‘ \|

This result explicitly shows that @, is a function of 8 and ¢.

* For example, at the point in space r = 7.239, 6 = 90° and ¢ =0°, we
find that @, = @, . In other words, at this point in space, the direction
@, points in the x-direction.

* Or, at the point in space r = 2.735, 6 = 90° and ¢ =90°, we find that
a, = a,. In other words, at this point in space, @, points in the y-
direction.
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Spherical Base Vectors (contd.)

* Additionally, we can write @, and @, as:

Gy = (@ ), + (G- 0,)8, + (& GG,

@, = (@ G, + (@ 6,)a, + (

=)

+ 3G,

e Alternatively, we can write Cartesian base vectors in terms of spherical
base vectors, i.e.,

a, = (@, a)a, + (@, a)dy + (a,.4,)a,
a, = (a,.a,)a, + (a,.ay )ay + (a,.4,)a,
a0, = (a,.6)a, + (&, Gy)d, + (,.0,)a,)
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Cylindrical Base Vectors

* Cylindrical base vectors are the natural base vectors of a cylinder.

* @, points in the direction of increasing p. In other words, a, points
away from the z-axis.

* 4, points in the direction of increasing ¢. This is precisely the same
base vector we described for spherical base vectors.

* @, points in the direction of increasing z. This is precisely the same
base vector we described for Cartesian base vectors.

a, / It is evident, that like spherical base \
g vectors, the cylindrical base vectors are
R dependent on position. A vector that
fff points away from the z-axis (e.g., &p), will
point in a direction that is dependent on

\ where we are in space! /
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Cylindrical Base Vectors (contd.)

* We can express cylindrical base vectors in terms of Cartesian base vectors.
First, we find that:

a,.a, = cos¢ ay,.a, = —sing¢ a.a. =0
a,.a, =sing¢ a,.a, =cos ¢ a,. a, =
a,.a, =0 a,.a, =0 a,.a, =1

* We can use these results to write cylindrical base vectors in terms of
Cartesian base vectors, or vice versal

a, = (a,a)a, + (a,a)a, + (a,. az)az]

[ap=cosc|)ax+smc|)ay]
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Cylindrical Base Vectors (contd.)

* Finally, we can write cylindrical base vectors in terms of spherical base
vectors, or vice versa, using the following relationships:

a,.a, =sin® a,-a, =0 a,.a. =cosH
a,.ay =cosb ay.ay =0 a,.ag = —sinb
a,.a, =0 a,.-a, =1 a, =

* For example:

P

(@, @)a, + (@, @&)d + (4, T, |

a,=sinba, +cos@ae]

C (ay @) a, + (. a¢)a¢+(aea)a]

—cosea —sin 0 a, ]

* or
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Vector Algebra Using Orthonormal Base Vectors

Q: Just why do we express a\
vector in terms of 3 orthonormal
base vectors? Doesn’t this just
make things even more
complicated ?? )

A: Actually, it makes things much simpler. The evaluation of vector
operations such as addition, subtraction, multiplication, dot product, and

cross product all become straightforward if all vectors are expressed
using the same set of base vectors.
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Dot Product
Say we take the dot product of A and B:

Q: | thought
this was suppose
to make things
easier !?!

=A4,.(BA4,+B,a, +B3,)
+AA,.(BA,+B,a, +BA,)
+A4,(Ba +B4, +Ba,)
=AB,(4.4,)+AB (4.4 )+AB,(4.4,)
+AB (4,4 )+AB,(4,4,)+AB,(44,)
+AB,(4,4,)+AB,(4,4,)+AB,(4,4,)
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Vector Algebra Using Orthonormal Base Vectors (contd.)

A: Be patient! Recall that these are orthonormal base vectors, therefore:

4.4,-4.4 -4.4 -1 4.4, =44 =44 =0

X"

* As aresult, our dot product expression reduces to this simple expression:

[AB —AB, +AB + AZBZ]

We can apply this to the expression for determining the magnitude
of a vector:

(A =AB=nmen]  [[A=VAA= A A A
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* Let us revisit previous example, where we expressed a vector using two
different sets of basis vectors:

| A=20a,+15,| | A-25, |

 Therefore, the magnitude of A is determined to be:

[ Al=+2°+15° =25 ] [ |/K|=\/E=2.5]

Q: Hey! We get the same answer from both expressions; is this a
coincidence?
A: No! Remember, both expressions represent the same vector, only

using different sets of base vectors. The magnitude of vector Ais 2.5,
regardless of how we choose to express A.
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The Position Vector

 Consider a point whose location in space is specified with Cartesian
coordinates (e.g., P(x, y, z)). Now consider the directed distance (a vector
quantity!) extending from the origin to this point.

(" This particular directed distance—a )
vector beginning at the origin and

7 extending outward to a point—is a very
J important and fundamental directed

Qistance known as the position vector 7

P(x, v, z)

~
-

e Using the Cartesian coordinate system, the position
vector can be explicitly written as:

[F =Xa, +Yya, + zéz]
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The Position Vector (contd.)

Note that given the coordinates of some point (e.g., x =1, y =2, z =-3), we
can easily determine the corresponding position vector (e.g.,, 7 = a, +

2a, —34,).

Moreover, given some specific position vector (e.g., © = 44, — 2a,), we
can easily determine the corresponding coordinates of that point (e.g., x

=0,y =4, z =-2).

In other words, a position vector 7 is an alternative way to denote the
location of a point in space!l We can use three coordinate values to
specify a point’s location, or we can use a single position vector 7.

~

\_

(I see! The position vector is essentiall

a pointer. Look at the end of the
vector, and you will find the point
specified!

v

J




Information Technology Delhi

1D

Indraprastha Institute of
b ECE230

The magnitude of 7

* Note the magnitude of any and all position vectors is:

[|F|:\/§=\/x2+y2+z2 :r]

Q: Hey, this makes perfect sense!
Doesn’t the coordinate value r have a
physical interpretation as the distance

between the point and the origin?

—

A: That’s right! The magnitude of a directed distance vector is equal to the
distance between the two points—in this case the distance between the
specified point and the origin!




Information Technology Delhi

1D

Indraprastha Institute of
b ECE230

Alternative forms of the position vector

* Be careful! Although the position vector is correctly expressed as:

[F =Xa, +ya, + zéz]

* |tis NOT CORRECT to express the position vector as:

—_—

F¢pép+¢é¢+zéz]

NEVER, EVER express the
T#ra +64,+ ¢é¢] position vector in either
_ of these two ways!

s

.

It should be readily apparent that the two expression above cannot
represent a position vector—because neither is even a directed
distance!
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Alternative forms of the position vector (contd.)

Q: Why sure—it is of course readily
apparent to me—but why don’t you
go ahead and explain it to those with

a T~ lessinsight!

A: Recall that the magnitude of the position vector 7 has units of distance.
Thus, the scalar components of the position vector must also have units of
distance (e.g., meters). The coordinates x, y, z, p and r do have units of
distance, but coordinates 6 and ¢ do not.

i §

v
[Thus, the vectors 64, and ¢a, cannot be vector components of a]

position vector—or for that matter, any other directed distance!
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Alternative forms of the position vector (contd.)
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* |Instead, we can use coordinate transforms to show that:

[F =Xa, +Yya, + zéz]

[: pCoSPa, + psinga, + zéz]

[: rsingcosga, +rsingsinga, + rcos@éz]

—

{ALWAYS use one of these three expressions of a position vector! !]

" Note that in each of the three expressions above, we use )
Cartesian base vectors. The scalar components can be expressed
using Cartesian, cylindrical, or spherical coordinates, but we must

\ always use Cartesian base vectors. y
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Alternative forms of the position vector (contd.)
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Q: Why must we always use
Cartesian base vectors? You
said that we could express any vector
using spherical or base vectors.
Doesn’t this also apply to position
vectors?

fA: The reason we only use Cartesian base vectors for constructing a A
position vector is that Cartesian base vectors are the only base vectors
. whose directions are fixed—independent of position in space! )
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Applications of the Position Vector

* Position vectors are particularly useful when we need to determine the
directed distance between two arbitrary points in space.

0\ If the location of point P, is denoted
by position vector 7,, and the
Pa(x, v,2) R, PalX, ¥, 2)  location of point P, by position

vector 15, then the directed distance
from point P, to point Py, is:

S

We can use this directed distance R, to
describe much about the relative locations
of point P, and P;!
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Application of the Position Vector

For example, the physical distance between these two points is simply
the magnitude of this directed distance.
Likewise, we can specify the direction toward point P;, with respect to
point P,, by defining the unit vector a ,;:

N\

PA(X, Y, 2) ’ |]

\\/
( [
>
o
Il
0| AO]
i Pt
o o
[l
Exiia
I I
o B
—
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Consider the vector field 17(7’), which describes the wind velocity across

the state of Delhi.
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Vector Field Notation (contd.)

I, =-400a, + 204, The location of Mundka

r,=-90a, +70a, The location of Pitampura

r,=30a, - 5éy The location of Patparganj

r, =404, - 90:’?1y The location of Okhla Industrial Estate
I, =—-130a, — 7Oé‘y The location of |Gl Airport locality

e Evaluating the vector field 17(1’) at these locations provides the wind
velocity at each Delhi locality (units of kmph).

V(1) =154, -174, mmmm)  The wind velocity in Mundka

\7(_2) =15a, -9, ‘ The wind velocity in Pitampura

\7(T3) =114, ‘ The wind velocity in Patparganj

\7(_4) =74, ‘ The wind velocity in Okhla Industrial Estate
\7(_5) =94, — 4éy ‘ The wind velocity in IGI Airport locality
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“Vector Field Notation (contd.)

* From vector field /T(f), we can find the magnitude and direction of the
discrete vector A that is located at the point defined by position vector r.

-

* This discrete vector A does not “extend” from the origin to the point
described by position vector . Rather, the discrete vector A describes a

quantity at that point, and that point only. The magnitude of vector A does
not have units of distance! The length of the arrow that represents vector

Ais merely symbolic—its length has no direct physical meaning.

* On the other hand, the position vector 7, being a directed distance, does
extend from the origin to a specific point in space. The magnitude of a
position vector 7 is distance—the length of the position vector arrow has
a direct physical meaning!

* Additionally, we should again note that a vector field need not be static. A
dynamic vector field is likewise a function of time, and thus can be
described with the notation:
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The Contour C

* |n this class, we will limit ourselves to studying only those contours that
are formed when we change the location of a point by varying just one
coordinate parameter. In other words, the other two coordinate

parameters will remain fixed.
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Mathematically, therefore, a contour is described by:

2 equalities (e.g., x =2,y =-4; r =3, ¢ =n/4) AND
1 inequality (e.g.,-1<z<5;0<0<mn/2)

 Likewise, we will need to explicitly determine the differential
displacement vector dl for each contour.

Recall we have studied seven coordinate parameters (x, vy, z, p, ¢, r, 6 ). As
a result, we can form seven different contours C!
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Cartesian Contours

Say we move a point from P(x =1, y =2, z =-3) to P(x =1, y =2, z=3) by
changing only the coordinate variable z from z =-3 to z=3. In other words,
the coordinate values X and y remain constant at x =1 and y = 2.

We form a contour that is a line segment, parallel to the z-axis!

7 A

/Note that every point anng\
this segment has coordinate
values x =1 and y =2. As we
move along the contour, the
>Y only coordinate value that

C \ changes is Z. /

@ P(1,23)

. P(lr Zr '3)
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Cartesian Contours (contd.)

 Therefore, the differential directed distance associated with a change in
position from zto z +dz, isdl = dz = a,dz

Z A
P(1, 2, 3) Similarly, a line segment parallel to the
X-axis (or y-axis) can be formed by
dz changing coordinate parameter x (or y),
Sy with a resulting differential

displacement vector of dl = dx = @_dx

9 (or dl = dy = a,,dy).

X

‘ P(lr 2) '3)
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Cartesian Contours (contd.)

The three Cartesian contours are therefore:

1. Line segment parallel to the z-axis
X=C, y=C, C,<z<C, mmmm)  (dl =4,0z

2. Line segment parallel to the y-axis

[x=cX z=Cc, cylsyscyz} — [a:éydy]

3. Line segment parallel to the x-axis

[Y=Cy z=Cc, CX1£x£cX2] —> [a:éxdx}
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Cylindrical Contours

* Say we move a point from P(p =1, ¢ = 45°, z =2) to P(p =3, ¢ = 45°, z =2) by
changing only the coordinate variable p from p =1 to p =3. In other words,
the coordinate values ¢ and z remain constant at ¢ = 45° and z =2.

e We form a contour that is a line segment, parallel to the x-y plane (i.e.,
perpendicular to the z-axis).

z 1 P(1, 45°, 2) / Note that every point along this )
segment has coordinate values ¢
dp =45° and z =2. As we move along
¢ the contour, the only coordinate

P(3, 45°, 2) \_ value that changes is p. )

>y

(Therefore, the differential directed distance
associated with a change in position from p
to p+dp, isdl=dp =a,dp

\_ J
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Cylindrical Contours (contd.)

* Alternatively, say we move a point from P(p =3, ¢ = 0°, z=2)to P(p =3, ¢ =
90°, z =2) by changing only the coordinate variable ¢ from ¢ = 0° to ¢ =
90°. In other words, the coordinate values p and z remain constant at p =3
and z =2. We form a contour that is a circular arc, parallel to the x-y plane.

Z A

Note: if we move from ¢ = 0° to
P(3, 90°, 2) ¢ = 360°, a complete circle is
C formed around the z-axis.

P(3, 0°, 2 a8
d /" Every point along the arc has

coordinate values p = 3 and z =2.
As we move along the contour,
the only coordinate value that
\_ changes is ¢. Y,
X Therefore, the differential directed distance associated with a
change in position from ¢ to ¢+d¢ is dl = dg = a,pdd

A4
<
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Cylindrical Contours (contd.)

The three cylindrical contours are therefore described as:

1. Line segment parallel to the z-axis

[pch p=c, czlszs%] —

2. Circular arc parallel to the xy-plane

[pop z=Cc, c¢1£¢sc¢2] ‘ [a=é¢pd¢]

3. Line segment parallel to the xy plane

[¢=C¢ L=C, Cplﬁ,OSsz] |:> _|=é-pdp
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Spherical Contours

 Say we move a point from P(r =0, 6 = 60°, ¢ = 45°) to P(r =3, 6 = 60°, ¢ =
45°) by changing only the coordinate variable r from r=0 to r =3. In other
words, the coordinate values 8 and ¢ remain constant at 6 = 60° and ¢ =
450,

 We form a contour that is a line segment, emerging from the origin.

z Every point along the line segment
P(3, 60°, 45°) has coordinate values 6 = 60° and
¢ = 45°. As we move along the
contour, the only coordinate value
that changes is r.

P(0, 60°, 45°)

> Y

Therefore, the differential directed distance
associated with a change in position from r
tor+dr,isdl=dr =a. dr
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Spherical Contours (contd.)

* Alternatively, say we move a point from P(r =3, 8 = 0°, ¢ = 45°) to P(r =3,
0 = 90°, ¢ = 45°) by changing only the coordinate variable 8 from 6 = 0°
to 8 =90°. In other words, the coordinate values r and ¢ remain constant
atr=3and ¢ = 45°

We form a circular arc, whose plane

7 A includes the z-axis.
P(3, 0°, 45°) Eyery point along the arc has
coordinate values r = 3 and ¢ = 45°. As
do we move along the contour, the only
coordinate value that changes is 6.

> Y

Therefore, the differential directed distance
associated with a ch_angin position from 0
X P(3, 90°, 45°) to 6+d6, isdl =d0 = a,rdo




Indraprastha Institute of
Information Technology Delhi ECE230

1D

Spherical Contours (contd.)

* Finally, we could fix coordinates r and 0 and vary coordinate ¢ only—but
we already did this in cylindrical coordinates! We again find that a
circular arc is generated, an arc that is parallel to the x-y plane.

The three spherical contours are therefore:

1. Circular arc parallel to the xy-plane
[r =C, 6=, C¢1S¢SC¢2] — [a:é¢rsin0d¢]
2. Circular arcin a plane that includes z-axis

r=c, ¢=c, cy<O<c,| EmmEE) dI=4,rdo

3. Line segment directed towards the origin

[9:09 p=c, crlsrscrz] |:>[m:érdr]
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The Differential Surface Vector for Coordinate Systems

e Given that ds = dl X dm, we can determine the differential surface
vectors for each of the three coordinate systems.

N

dm Cartesian

[d_sxz@xﬁzéxdydz]

[d_syzﬁxﬁzéydxdz]

V

|

ds, = dx x dy =4 dxdy

(It is apparent that these differential surface |
ds = dl X dm vectors define a small patch of area on the
surface of flat plane.

. J
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The Differential Surface Vector for Coordinate Systems
Cylindrical

(05, ~dgxdz=a,pdgdz | (o5, ~Gzxp-agpde| (05 =dpxdg=a,00pds)

We shall find that d_Sp describes a small patch of area on the surface of a
cylinder, ds¢ describes a small patch of area on the surface of a plane, and
ds, again describes a small patch of area on the surface of a flat plane.

Spherical

ds, —d6x dg =& r’sinAdadg @E:@x&=égrsin9drd¢] ds, = dr 00 = &,rdrdg

We shall find that ds, describes a small patch of area on the surface of a
sphere, ds, describes a small patch of area on the surface of a cone, and
ds¢ again describes a small patch of area on the surface of a plane.
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I The Surface S

Although S represents any surface, no matter how complex or convoluted,
we will study only basic surfaces. In other words, ds will correspond to one
of the differential surface vectors from Cartesian, cylindrical, or spherical
coordinate systems.

In this class, we will limit ourselves to studying only those surfaces that are
formed when we change the location of a point by varying two coordinate
parameters. In other words, the other coordinate parameters will remain

fixed.

Mathematically, therefore, a surface is described by:
1 equality (e.g., x=5 OR r=3) AND 2inequalities (e.g.,-1<y<5 and
-2<z<7 OR 0<0<n/2 and 0<d<m)

Therefore, we will need to explicitly determine the differential surface
vector ds for each contour.
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Cartesian Coordinate Surfaces

. ds =dxxdy =4 dxdy 1. Flat plane parallel to y-z plane.
L Z z
) x=¢  C,<y<c, C,<Z<cC,
ds, = dz x dx =4 dxdz [_Szi?xziéxdydz]
/Zl dz y y
_ X _
ds, =dyxdz=a dydz
Ay - 2. Flat plane parallel to x-z plane.

Y=¢,  cu<x<c, CuS25cy

3. Flat plane parallel to x-y plane.
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Cylindrical Coordinate Surfaces

Z

# 1. Circular cylinder centered around the z-axis.
s a, p=C, Cyu<¢=<C, C,;<I=ZC,
% (ds=+ds, =+ pdgd)
— S, =Idp

O 3. Flat plane parallel to x-y plane.
X
[z c, C,<p<cC, c¢1£¢30¢2]

[& = +ds, = ézpdqﬁdp]
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Cylindrical Coordinate Surfaces

Now let’s see if you've been\
paying attention! Determine
the two inequalities that
\ define this flat surface. Y,

%

WV

I

VAN

S D

VAN IA
ro

/
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Spherical Coordinate Surfaces

i 1. Sphere centered at the origin.
rsinfédg

r=C¢, Cpp <O <Cy, C¢1S¢SC¢2

[E +ds =+4r 5|n9d6?d¢]

2. \Vertical plane extending from the z-axis

[¢=C¢ Cp <O<C,, crlsrscrz]

=5 | ds=+ds, = +a,rdrde)

X 3. A cone with apex at the origin and aligned with the z-axis
[QZCH Chsr=Cp, C¢1S¢SC¢2]

[E:ig rsm@d¢dr]
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The Volume V

* As we might expect from our knowledge about how to specify a point P (3
equalities), a contour C (2 equalities and 1 inequality), and a surface S (1
equality and 2 inequalities), a volume Vv is defined by 3 inequalities.

Indraprastha Institute of
b ECE230

Cartesian

The inequalities: c¢,;<x<c, ¢, <Y <c, c,;<z<c,,

Q&l define a rectangular volume, whose sides are parallel to the x-y,
y-z, and x-z planes.

 The differential volume dv used for constructing this Cartesian volume is:

[dv =dxdydz J

v[ v=| j { dxdydz]
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The Volume V

Cylindrical
The inequalities: c,;<p<=<c, Copr SO < Cyy Cc,; £z <cC,,

defines a cylinder, or some subsection thereof (e.g. a tube!).

* The differential volume dv is used for constructing this cylindrical volume

is: dv = ododdd Cp2 02 ¢,
V= pdpdé Zu.-.vj“pdpdmz]
Cpr1 Cp1 Cn1

Spherical
The inequalities: ¢, <r=<c, Co1 £ 0 < cy, Cpr SO < Cyy

defines a sphere, or some subsection thereof (e.g., an “orange slice” !).

* The differential volume dv used for constructing this spherical volume is:

[dV =r? sinB drdod¢ ] \ ( V= ng Cj'z Cj'z pdpd¢dzJ
/k Cr1 Co1 Cpa
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Example: The Volume Integral

Let’s evaluate the volume integral: [.mg(r)dv]

where g(r) =1 and the volume Vv is a sphere with radius R.

In other words, the volume Vv is described for: 0<r<R

e Therefore we use for the differential volume dv:

[dv=ﬁd_¢9><@: r2sin@drddd¢ ]

2r

|

Irzsin 6drdad¢ = quﬁzsin edezrzdr = (Zn)(z)(%sj

[ w g(F)dv = 4,[TR3 J

* Therefore: _mg(r)dv

O N
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Example: The Volume Integral

Q: So what’s the volume integral even good for?

A: Generally speaking, the scalar function g(7) will be a density function,
with units of things/unit volume. Integrating g(r) with the volume integral
provides us the number of things within the space V!

For example, let’s say g(7) describes the
density of a big swarm of insects, using
units of insects/m3 (i.e., insects are the
things).

Note that g(7) must indeed be a
function of position, as the density of
insects changes at different locations
throughout the swarm.
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Example: The Volume Integral

 Now, say we want to know the total number of insects within the swarm,
which occupies some space V. We can determine this by simply applying
the volume integral!

[number of insects in swarm =Ijjg(r)dv]

where space V completely encloses the
insect swarm.



