Lecture - 2

Date: 08.01.2015

- Coordinate Transformations
- Base Vectors
- Position Vector
- Contours (Cartesian, Cylindrical, and Spherical)
- Surfaces (Cartesian, Cylindrical, and Spherical)
- Volume

Coordinate Transformations

- Say we know the location of a point, or the description of some scalar field in terms of Cartesian coordinates (e.g., $T(x, y, z)$).
- What if we decide to express this point or this scalar field in terms of cylindrical or spherical coordinates instead?
- We see that the coordinate values $\boldsymbol{z}, \boldsymbol{\rho}, \boldsymbol{r}$, and $\boldsymbol{\theta}$ are all variables of a right triangle! We can use our knowledge of trigonometry to relate them to each other.
- In fact, we can completely derive the relationship between all six independent coordinate values by considering just two very important right triangles!
- Hint: Memorize these $\mathbf{2}$ triangles!!!

Coordinate Transformations (contd.)

Right Triangle \#1

$$
z=r \times \cos \theta=\rho \times \cot \theta=\sqrt{r^{2}-\rho^{2}}
$$

$$
\rho=r \times \sin \theta=z \times \tan \theta=\sqrt{r^{2}-z^{2}}
$$

$$
r=\sqrt{\rho^{2}+z^{2}}=\rho \times \operatorname{cosec} \theta=z \times \sec \theta
$$

$$
\theta=\tan ^{-1}\left[\frac{\rho}{z}\right]=\sin ^{-1}\left[\frac{\rho}{r}\right]=\cos ^{-1}\left[\frac{z}{r}\right]
$$

Coordinate Transformations (contd.)

Right Triangle \#2

$$
\begin{aligned}
& x=\rho \times \cos \phi=y \times \cot \phi=\sqrt{\rho^{2}-y^{2}} \\
& y=\rho \times \sin \phi=x \times \tan \phi=\sqrt{\rho^{2}-x^{2}}
\end{aligned}
$$

$$
\rho=\sqrt{x^{2}+y^{2}}=x \times \sec \phi=y \times \operatorname{cosec} \phi
$$

$$
\phi=\tan ^{-1}\left[\frac{y}{x}\right]=\sin ^{-1}\left[\frac{y}{\rho}\right]=\cos ^{-1}\left[\frac{x}{\rho}\right]
$$

Coordinate Transformations (contd.)

Combining the results of the two triangles allows us to write each coordinate set in terms of each other

- Cartesian and Cylindrical

$$
\begin{gathered}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left[\frac{y}{x}\right] \\
z=z
\end{gathered}
$$

$$
\begin{aligned}
& x=\rho \times \cos \phi \\
& y=\rho \times \sin \phi \\
& z=z
\end{aligned}
$$

- Cartesian and Spherical

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\cos ^{-1}\left[\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right] \\
\phi=\tan ^{-1}\left[\frac{y}{x}\right] \\
\begin{array}{l}
x=r \times \sin \theta \times \cos \phi \\
y=r \times \sin \theta \times \sin \phi \\
z=r \times \cos \theta
\end{array}
\end{gathered}
$$

Coordinate Transformations

- Cylindrical and Spherical

$$
\begin{gathered}
\rho=r \times \sin \theta \\
\phi=\phi \\
z=r \times \cos \theta
\end{gathered}
$$

$$
\begin{gathered}
r=\sqrt{\rho^{2}+z^{2}} \\
\theta=\tan ^{-1}\left[\frac{\rho}{z}\right] \\
\phi=\phi
\end{gathered}
$$

Base Vectors

Q: We know that vector

 quantities (either discrete or field) have both magnitude and direction. But how do we specify direction in 3-D space? Do we use coordinate values (e.g., x, y, z)??A: It is very important that you understand that coordinates only allow us to specify position in 3-D space. They cannot be used to specify direction!

The most convenient way for us to specify the direction of a vector quantity is by using a well-defined orthonormal set of vectors known as base vectors.

Base Vectors (contd.)

- Recall that an orthonormal set of unity vectors, say \hat{a}_{1}, \hat{a}_{2}, and \hat{a}_{3} have the following properties:
- Each vector is a unit vector: $\hat{a}_{1} \cdot \hat{a}_{1}=\hat{a}_{2} \cdot \hat{a}_{2}=\hat{a}_{3} \cdot \hat{a}_{3}=1$

Each vector is mutually orthogonal: $\hat{a}_{1} \cdot \hat{a}_{2}=\hat{a}_{2} \cdot \hat{a}_{3}=\hat{a}_{3} \cdot \hat{a}_{1}=0$

- Additionally, a set of base vectors \hat{a}_{1}, \hat{a}_{2}, and \hat{a}_{3} must be arranged such that:

All base vectors \hat{a}_{1}, \hat{a}_{2}, and \hat{a}_{3} must form a right-handed, orthonormal set.

Base Vectors (contd.)

Recall that we use unit vectors to define direction. Thus, a set of base vectors define three distinct directions in our 3-D space!

Q: But, what three directions do we use?? I remember, there are an infinite number of possible orientations of an orthonormal set!!
A: We will define several systematic, mathematically precise methods for defining the orientation of base vectors. Generally speaking, we will find that the orientation of these base vectors will not be fixed, but will in fact vary with position in space (i.e., as a function of coordinate values)!

Base Vectors (contd.)

- Essentially, we will define at each and every point in space a different set of base vectors, which can be used to uniquely define the direction of any vector quantity at that point!

Q: Good golly! Defining a different set of base vectors for every point in space just seems confusing. Why can't we just fix a set of base vectors such that their orientation is the same at all points in space?

A: We will in fact study one method for defining base vectors that does in fact result in an orthonormal set whose orientation is fixed-the same at all points in space (Cartesian base vectors).
However, we will study two other methods where the orientation of base vectors is different at all points in space (spherical and cylindrical base vectors). We use these two methods to define base vectors because for many physical problems, it is actually easier and wiser to do so!

Base Vectors (contd.)

For example, consider how we define direction on Earth:
North/South, East/West, Up/Down.
Each of these directions can be represented by a unit vector, and the three unit vectors together form a set of base vectors.

Think about, however, how these base vectors are oriented! Since we live on the surface of a sphere (i.e., the Earth), it makes sense for us to orient the base vectors with respect to the spherical surface.

Base Vectors (contd.)

What this means, of course, is that each location on the Earth will orient its "base vectors" differently. This orientation is thus different for every point on Earth-a method that makes perfect sense!

Cartesian Base Vectors

- As the name implies, the Cartesian base vectors are related to the Cartesian coordinates.
- Specifically, the unit vector $\widehat{a_{x}}$ points in the direction of increasing \mathbf{x}. In other words, it points away from the $\mathrm{y}-\mathrm{z}(\mathrm{x}=0)$ plane.
- Similarly, $\widehat{a_{y}}$ and $\widehat{a_{z}}$ point in the direction of increasing y and z , respectively.

> It was said that the directions of base vectors generally vary with location in space-Cartesian base vectors are the exception! Their directions are the same regardless of where you are in space.

Vector Expansion using Base Vectors

- Having defined an orthonormal set of base vectors, we can express any vector in terms of these unit vectors as:

$$
\vec{A}=\mathrm{A}_{\mathrm{x}} \widehat{a}_{x}+\mathrm{A}_{\mathrm{y}} \widehat{a_{y}}+\mathrm{A}_{z} \widehat{a}_{z}
$$

- Note therefore that any vector can be written as a sum of three vectors!
- Each of these three vectors point in one of the three orthogonal directions $\widehat{a_{x}}, \widehat{a_{y}}$, and $\widehat{a_{z}}$.
- The magnitude of each of these three vectors are determined by the scalar values A_{x}, A_{y}, and A_{z}.
- The values A_{x}, A_{y}, and A_{z} are called the scalar components of vector \vec{A}.
- The vectors $A_{x} \hat{a}_{x}, A_{y} \hat{a}_{y}$ and $A_{z} \hat{a}_{z}$ are called the vector components of \vec{A}.

Q: What the heck are scalar components $A_{x}, A_{y^{\prime}}$ and A_{z} and how do we determine them ??

A: Use the dot product to evaluate the expression above!

Vector Expansion using Base Vectors (contd.)

- Begin by taking the dot product of the above expression with unit vector \hat{a}_{x}

$$
\vec{A} \cdot \widehat{a_{x}}=\left(\mathrm{A}_{\mathrm{x}} \widehat{a}_{x}+\mathrm{A}_{\mathrm{y}} \widehat{a_{y}}+\mathrm{A}_{z} \widehat{a}_{z}\right) \cdot \widehat{a_{x}} \quad \square \mathrm{~A}_{\mathrm{x}}=\vec{A} \cdot \widehat{a_{x}}
$$

- In other words, the scalar component A_{x} is just the value of the dot product of vector $\overrightarrow{\mathrm{A}}$ and base vector \hat{a}_{x}. Similarly, we find that:

$$
\mathrm{A}_{\mathrm{y}}=\vec{A} \cdot \widehat{a_{y}} \quad \mathrm{~A}_{\mathrm{z}}=\vec{A} \cdot \hat{a}_{z}
$$

- Thus, any vector can be expressed specifically as:

$$
\vec{A}=\left(\vec{A} \cdot \widehat{a_{x}}\right) \widehat{a_{x}}+\left(\vec{A} \cdot \widehat{a_{y}}\right) \widehat{a_{y}}+\left(\vec{A} \cdot \widehat{a_{z}}\right) \widehat{a_{z}}
$$

Vector Expansion using Base Vectors (contd.)

- For example, consider a vector \vec{A}, along with two different sets of orthonormal base vectors:

- The scalar components of vector $\overrightarrow{\mathrm{A}}$, in the direction of each base vector are:

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{x}}=\vec{A} \cdot \widehat{a}_{x}=2.0 & \mathrm{~A}_{1}=\vec{A} \cdot \widehat{a_{1}}=0.0 \\
\mathrm{~A}_{\mathrm{y}}=\vec{A} \cdot \widehat{a}_{y}=1.5 & \mathrm{~A}_{2}=\vec{A} \cdot \widehat{a_{2}}=2.5 \\
\mathrm{~A}_{\mathrm{z}}=\vec{A} \cdot \widehat{a}_{z}=0.0 & \mathrm{~A}_{3}=\vec{A} \cdot \hat{a}_{3}=0.0
\end{array}
$$

- Using the first set of base vectors, we can write the vector $\overrightarrow{\mathrm{A}}$ as:

$$
\vec{A}=A_{x} \widehat{a_{x}}+\mathrm{A}_{\mathrm{y}} \widehat{a_{y}}+\mathrm{A}_{z} \widehat{a_{z}}=2.0 \widehat{a_{x}}+1.5 \widehat{a_{y}}
$$

Vector Expansion using Base Vectors (contd.)

- using the second set, we find that:

$$
\vec{A}=\mathrm{A}_{1} \widehat{a_{1}}+\mathrm{A}_{2} \widehat{a_{2}}+\mathrm{A}_{3} \widehat{a_{3}}=2.5 \widehat{a_{2}}
$$

- It is very important to realize that: $\vec{A}=2.0 \widehat{a_{x}}+1.5 \widehat{a_{y}}=2.5 \widehat{a_{2}}$

In other words, both expressions represent exactly the same vector! The difference in the representations is a result of using different base vectors, not because vector $\overrightarrow{\mathrm{A}}$ is somehow "different" for each representation.

Spherical Base Vectors (contd.)

- Spherical base vectors are the "natural" base vectors of a sphere.
- $\widehat{a_{r}}$ points in the direction of increasing r. In other words $\widehat{a_{r}}$ points away from the origin. This is analogous to the direction we call up.
- $\widehat{a_{\theta}}$ points in the direction of increasing θ. This is analogous to the direction we call south.
- \hat{a}_{ϕ} a points in the direction of increasing ϕ. This is analogous to the direction we call east.

Spherical Base Vectors (contd.)

IMPORTANT NOTE: The directions of spherical base vectors are dependent on position. First you must determine where you are in space (using coordinate values), then you can define the directions of $\widehat{a_{r}}, \hat{a}_{\phi}$, and $\widehat{a_{\theta}}$.
Reminder: Cartesian base vectors are special, in that their directions are independent of location-they have the same directions throughout all space.

- Thus, it is prudent to define spherical base vectors in terms of Cartesian base vectors. It can be shown that:
$\widehat{a_{r}} \cdot \widehat{a_{x}}=\sin \theta \cos \phi$

$$
\begin{aligned}
& \widehat{a_{\theta}} \cdot \widehat{a_{x}}=\cos \theta \cos \phi \\
& \widehat{a_{\theta}} \cdot \widehat{a_{y}}=\cos \theta \sin \phi \\
& \widehat{a_{\theta}} \cdot \widehat{a_{z}}=-\sin \theta
\end{aligned}
$$

$$
\widehat{a}_{\phi} \cdot \widehat{a_{x}}=-\sin \phi
$$

$$
\widehat{a_{r}} \cdot \widehat{a_{y}}=\sin \theta \sin \phi \quad \widehat{a_{\theta}} \cdot \widehat{a_{y}}=\cos \theta \sin \phi
$$

$$
\hat{a}_{\phi} \cdot \hat{a_{y}}=\cos \phi
$$

$$
\widehat{a_{r}} \cdot \widehat{a_{z}}=\cos \theta
$$

$$
\widehat{a}_{\phi} \cdot \widehat{a}_{z}=0
$$

Spherical Base Vectors (contd.)

- any vector $\overrightarrow{\mathrm{A}}$ can be written as: $\vec{A}=\left(\vec{A} \cdot \widehat{a}_{x}\right) \widehat{a}_{x}+\left(\vec{A} \cdot \widehat{a}_{y}\right) \widehat{a}_{y}+\left(\vec{A} \cdot \widehat{a}_{z}\right) \widehat{a}_{z}$
- Therefore, we can write unit vector $\widehat{a_{r}}$ as:

$$
\widehat{a_{r}}=\left(\widehat{a_{r}} \cdot \widehat{a_{x}}\right) \widehat{a_{x}}+\left(\widehat{a_{r}} . \widehat{a_{y}}\right) \widehat{a_{y}}+\left(\widehat{a_{r}} . \widehat{a_{z}}\right) \widehat{a_{z}}
$$

$$
\widehat{a_{r}}=\sin \theta \cos \phi \widehat{a_{x}}+\sin \theta \sin \phi \widehat{a_{y}}+\cos \theta \widehat{a_{z}}
$$

This result explicitly shows that $\widehat{a_{r}}$ is a function of θ and ϕ.

- For example, at the point in space $r=7.239, \theta=90^{\circ}$ and $\phi=0^{\circ}$, we find that $\widehat{a_{r}}=\widehat{a_{x}}$. In other words, at this point in space, the direction $\widehat{a_{r}}$ points in the \mathbf{x}-direction.
- Or, at the point in space $r=2.735, \theta=90^{\circ}$ and $\phi=90^{\circ}$, we find that $\widehat{a_{r}}=\widehat{a_{y}}$. In other words, at this point in space, $\widehat{a_{r}}$ points in the \mathbf{y} direction.

Spherical Base Vectors (contd.)

- Additionally, we can write $\widehat{a_{\phi}}$, and $\widehat{a_{\theta}}$ as:

$$
\begin{aligned}
& \widehat{a_{\theta}}=\left(\widehat{a_{\theta}} \cdot \widehat{a_{x}}\right) \widehat{a_{x}}+\left(\widehat{a_{\theta}} \cdot \hat{a_{y}}\right) \hat{a}_{y}+\left(\widehat{a_{\theta}} \cdot \widehat{a_{z}}\right) \widehat{a_{z}} \\
& \widehat{a_{\phi}}=\left(\widehat{a_{\phi}} \cdot \widehat{a_{x}}\right) \widehat{a_{x}}+\left(\widehat{a_{\phi}} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\widehat{a_{\phi}} \cdot \widehat{a_{z}}\right) \widehat{a_{z}}
\end{aligned}
$$

- Alternatively, we can write Cartesian base vectors in terms of spherical base vectors, i.e.,

$$
\begin{aligned}
& \hat{a}_{x}=\left(\hat{a}_{x} \cdot \widehat{a_{r}}\right) \widehat{a}_{r}+\left(\hat{a}_{x} \cdot \widehat{a_{\theta}}\right) \widehat{a}_{\theta}+\left(\hat{a}_{x} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& \hat{a}_{y}=\left(\hat{a}_{y} \cdot \widehat{a_{r}}\right) \widehat{a}_{r}+\left(\hat{a}_{y} \cdot \widehat{a_{\theta}}\right) \widehat{a}_{\theta}+\left(\hat{a}_{y} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& \hat{a}_{z}=\left(\hat{a}_{z} \cdot \widehat{a_{r}}\right) \widehat{a}_{r}+\left(\hat{a}_{z} \cdot \widehat{a_{\theta}}\right) \hat{a}_{\theta}+\left(\hat{a}_{z} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}
\end{aligned}
$$

Cylindrical Base Vectors

- Cylindrical base vectors are the natural base vectors of a cylinder.
- $\widehat{a_{\rho}}$ points in the direction of increasing ρ. In other words, $\widehat{a_{\rho}}$ points away from the z -axis.
- \hat{a}_{ϕ} points in the direction of increasing ϕ. This is precisely the same base vector we described for spherical base vectors.
- \widehat{a}_{z} points in the direction of increasing z. This is precisely the same base vector we described for Cartesian base vectors.

> It is evident, that like spherical base vectors, the cylindrical base vectors are dependent on position. A vector that points away from the z-axis (e.g., \hat{a}_{ρ}), will point in a direction that is dependent on where we are in space!

Cylindrical Base Vectors (contd.)

- We can express cylindrical base vectors in terms of Cartesian base vectors. First, we find that:

$$
\begin{array}{lll}
\widehat{a_{\rho}} \cdot \widehat{a_{x}}=\cos \phi & \widehat{a_{\phi}} \cdot \widehat{a_{x}}=-\sin \phi & \widehat{a_{z}} \cdot \widehat{a_{x}}=0 \\
\widehat{a_{\rho}} \cdot \widehat{a_{y}}=\sin \phi & \widehat{a_{\phi}} \cdot \widehat{a_{y}}=\cos \phi & \widehat{a_{z}} \cdot \widehat{a_{y}}=0 \\
\widehat{a_{\rho}} \cdot \widehat{a_{z}}=0 & \widehat{a_{\phi}} \cdot \widehat{a_{z}}=0 & \widehat{a_{z}} \cdot \widehat{a_{z}}=1
\end{array}
$$

- We can use these results to write cylindrical base vectors in terms of Cartesian base vectors, or vice versa!

$$
\begin{aligned}
& \widehat{a_{\rho}}=\left(\widehat{a_{\rho}} \cdot \widehat{a_{x}}\right) \widehat{a_{x}}+\left(\widehat{a_{\rho}} \cdot \widehat{a_{y}}\right) \widehat{a_{y}}+\left(\widehat{a_{\rho}} \cdot \widehat{a_{z}}\right) \widehat{a_{z}} \\
& \widehat{a_{\rho}}=\cos \phi \widehat{a_{x}}+\sin \phi \widehat{a_{y}}
\end{aligned}
$$

- or

$$
\widehat{a_{x}}=\left(\widehat{a}_{x} \cdot \widehat{a_{\rho}}\right) \widehat{a_{\rho}}+\left(\widehat{a_{y}} \cdot \widehat{a_{\rho}}\right) \widehat{a}_{\rho}+\left(\widehat{a}_{z} \cdot \widehat{a_{\rho}}\right) \widehat{a}_{\rho}
$$

$$
\widehat{a_{x}}=\cos \phi \widehat{a_{\rho}}-\sin \phi \widehat{a_{\phi}}
$$

Cylindrical Base Vectors (contd.)

- Finally, we can write cylindrical base vectors in terms of spherical base vectors, or vice versa, using the following relationships:

$$
\begin{array}{lll}
\widehat{a_{\rho}} \cdot \widehat{a_{r}}=\sin \theta & \widehat{a_{\phi}} \cdot \widehat{a_{r}}=0 & \widehat{a_{z}} \cdot \widehat{a_{r}}=\cos \theta \\
\widehat{a_{\rho}} \cdot \widehat{a_{\theta}}=\cos \theta & \widehat{a_{\phi}} \cdot \widehat{a_{\theta}}=0 & \widehat{a_{z}} \cdot \widehat{a_{\theta}}=-\sin \theta \\
\widehat{a_{\rho}} \cdot \widehat{a_{\phi}}=0 & \widehat{a_{\phi}} \cdot \widehat{a_{\phi}}=1 & \widehat{a_{\phi}}=0
\end{array}
$$

- For example:

$$
\begin{aligned}
& \widehat{a_{\rho}}=\left(\widehat{a_{\rho}} \cdot \widehat{a_{r}}\right) \widehat{a}_{r}+\left(\widehat{a_{\rho}} \cdot \widehat{a_{\theta}}\right) \widehat{a_{\theta}}+\left(\widehat{a_{\rho}} \cdot \widehat{a_{\phi}}\right) \widehat{a_{\phi}} \\
& \widehat{a_{\rho}}=\sin \theta \widehat{a_{r}}+\cos \theta \widehat{a_{\theta}}
\end{aligned}
$$

- or

$$
\widehat{a_{\theta}}=\left(\widehat{a_{\theta}} \cdot \widehat{a_{\rho}}\right) \widehat{a_{\rho}}+\left(\widehat{a_{\theta}} \cdot \widehat{a_{\phi}}\right) \widehat{a_{\phi}}+\left(\widehat{a_{\theta}} \cdot \widehat{a_{z}}\right) \widehat{a_{z}}
$$

$$
\widehat{a_{\theta}}=\cos \theta \widehat{a_{\rho}}-\sin \theta \widehat{a_{z}}
$$

Vector Algebra Using Orthonormal Base Vectors

A: Actually, it makes things much simpler. The evaluation of vector operations such as addition, subtraction, multiplication, dot product, and cross product all become straightforward if all vectors are expressed using the same set of base vectors.

Vector Algebra Using Orthonormal Base Vectors (contd.)

Dot Product

Say we take the dot product of \vec{A} and \vec{B} :

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right) \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} \hat{a}_{x} \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& +A_{y} \hat{y}_{y} \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& +A_{z} \hat{a}_{z} \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} B_{x}\left(\hat{a}_{x} \cdot \hat{a}_{x}\right)+A_{x} B_{y}\left(\hat{a}_{x} \cdot \hat{a}_{y}\right)+A_{x} B_{z}\left(\hat{a}_{x} \cdot \hat{a}_{z}\right) \\
& +A_{y} B_{x}\left(\hat{a}_{y} \cdot \hat{a}_{x}\right)+A_{y} B_{y}\left(\hat{a}_{y} \cdot \hat{a}_{y}\right)+A_{y} B_{z}\left(\hat{a}_{y} \cdot \hat{a}_{z}\right) \\
& +A_{z} B_{x}\left(\hat{a}_{z} \cdot \hat{a}_{x}\right)+A_{z} B_{y}\left(\hat{a}_{z} \cdot \hat{a}_{y}\right)+A_{z} B_{z}\left(\hat{a}_{z} \cdot \hat{a}_{z}\right)
\end{aligned}
$$

Vector Algebra Using Orthonormal Base Vectors (contd.)

A: Be patient! Recall that these are orthonormal base vectors, therefore:

$$
\hat{a}_{x} \cdot \hat{a}_{x}=\hat{a}_{y} \cdot \hat{a}_{y}=\hat{a}_{z} \cdot \hat{a}_{z}=1 \quad \hat{a}_{x} \cdot \hat{a}_{y}=\hat{a}_{y} \cdot \hat{a}_{z}=\hat{a}_{z} \cdot \hat{a}_{x}=0
$$

- As a result, our dot product expression reduces to this simple expression:

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

We can apply this to the expression for determining the magnitude of a vector:

$$
|\vec{A}|^{2}=\vec{A} \cdot \vec{A}=A_{x}^{2}+A_{x}^{2}+A_{z}^{2}
$$

$$
|\vec{A}|=\sqrt{\vec{A} \cdot \vec{A}}=\sqrt{A_{x}^{2}+A_{x}^{2}+A_{z}^{2}}
$$

Vector Algebra Using Orthonormal Base Vectors (contd.)

- Let us revisit previous example, where we expressed a vector using two different sets of basis vectors:

$$
\vec{A}=2.0 \hat{a}_{x}+1.5 \hat{a}_{y}
$$

$$
\vec{A}=2.5 \hat{a}_{y}
$$

- Therefore, the magnitude of \vec{A} is determined to be:

$$
|\vec{A}|=\sqrt{2^{2}+1.5^{2}}=2.5
$$

$$
|\vec{A}|=\sqrt{2.5^{2}}=2.5
$$

Q: Hey! We get the same answer from both expressions; is this a coincidence?
A: No! Remember, both expressions represent the same vector, only using different sets of base vectors. The magnitude of vector \vec{A} is 2.5 , regardless of how we choose to express \vec{A}.

The Position Vector

- Consider a point whose location in space is specified with Cartesian coordinates (e.g., $P(x, y, z)$). Now consider the directed distance (a vector quantity!) extending from the origin to this point.

- Using the Cartesian coordinate system, the position vector can be explicitly written as:

$$
\bar{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}
$$

The Position Vector (contd.)

- Note that given the coordinates of some point (e.g., $x=1, y=2, z=-3$), we can easily determine the corresponding position vector (e.g., $\bar{r}=\hat{a}_{x}+$ $2 \hat{a}_{y}-3 \hat{a}_{z}$).
- Moreover, given some specific position vector (e.g., $\bar{r}=4 \hat{a}_{y}-2 \hat{a}_{z}$), we can easily determine the corresponding coordinates of that point (e.g., x $=0, y=4, z=-2$).
- In other words, a position vector \bar{r} is an alternative way to denote the location of a point in space! We can use three coordinate values to specify a point's location, or we can use a single position vector \bar{r}.

I see! The position vector is essentially a pointer. Look at the end of the vector, and you will find the point specified!

The magnitude of \bar{r}

- Note the magnitude of any and all position vectors is:

$$
\left||\bar{r}|=\sqrt{\bar{r} \cdot \bar{r}}=\sqrt{x^{2}+y^{2}+z^{2}}=r\right.
$$

Q: Hey, this makes perfect sense!
Doesn't the coordinate value r have a physical interpretation as the distance
between the point and the origin?

A: That's right! The magnitude of a directed distance vector is equal to the distance between the two points-in this case the distance between the specified point and the origin!

Alternative forms of the position vector

- Be careful! Although the position vector is correctly expressed as:

$$
\bar{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}
$$

- It is NOT CORRECT to express the position vector as:

$$
\begin{aligned}
& \bar{r} \neq \rho \hat{a}_{\rho}+\phi \hat{a}_{\phi}+z \hat{a}_{z} \\
& \bar{r} \neq r \hat{a}_{r}+\theta \hat{a}_{\theta}+\phi \hat{a}_{\phi}
\end{aligned}
$$

NEVER, EVER express the position vector in either of these two ways!

It should be readily apparent that the two expression above cannot represent a position vector-because neither is even a directed distance!

Alternative forms of the position vector (contd.)

A: Recall that the magnitude of the position vector \bar{r} has units of distance. Thus, the scalar components of the position vector must also have units of distance (e.g., meters). The coordinates x, y, z, ρ and r do have units of distance, but coordinates θ and ϕ do not.

> Thus, the vectors $\theta \hat{a}_{\theta}$ and $\phi \hat{a}_{\phi}$ cannot be vector components of a position vector-or for that matter, any other directed distance!

Alternative forms of the position vector (contd.)

- Instead, we can use coordinate transforms to show that:

$$
\bar{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}
$$

$$
=\rho \cos \phi \hat{a}_{x}+\rho \sin \phi \hat{a}_{y}+z \hat{a}_{z}
$$

$$
=r \sin \theta \cos \phi \hat{a}_{x}+r \sin \theta \sin \phi \hat{a}_{y}+r \cos \theta \hat{a}_{z}
$$

ALWAYS use one of these three expressions of a position vector!!

Note that in each of the three expressions above, we use Cartesian base vectors. The scalar components can be expressed using Cartesian, cylindrical, or spherical coordinates, but we must always use Cartesian base vectors.

Alternative forms of the position vector (contd.)

Q: Why must we always use
Cartesian base vectors? You
said that we could express any vector
using spherical or base vectors.
Doesn't this also apply to position
vectors?

A: The reason we only use Cartesian base vectors for constructing a position vector is that Cartesian base vectors are the only base vectors whose directions are fixed-independent of position in space!

Applications of the Position Vector

- Position vectors are particularly useful when we need to determine the directed distance between two arbitrary points in space.

Application of the Position Vector

- For example, the physical distance between these two points is simply the magnitude of this directed distance.
- Likewise, we can specify the direction toward point P_{B}, with respect to point P_{A}, by defining the unit vector $\hat{a}_{A B}$:

Vector Field Notation

- Consider the vector field $\vec{V}(\vec{r})$, which describes the wind velocity across the state of Delhi.

Vector Field Notation (contd.)

$$
\begin{aligned}
& \bar{r}_{1}=-400 \hat{a}_{x}+20 \hat{a}_{y} \\
& \bar{r}_{2}=-90 \hat{a}_{x}+70 \hat{a}_{y} \\
& \bar{r}_{3}=30 \hat{a}_{x}-5 \hat{a}_{y} \\
& \bar{r}_{4}=40 \hat{a}_{x}-90 \hat{a}_{y} \\
& \bar{r}_{5}=-130 \hat{a}_{x}-70 \hat{a}_{y}
\end{aligned}
$$

- Evaluating the vector field $\vec{V}(\vec{r})$ at these locations provides the wind velocity at each Delhi locality (units of kmph).

$$
\begin{aligned}
& \vec{V}\left(\bar{r}_{1}\right)=15 \hat{a}_{x}-17 \hat{a}_{y} \\
& \vec{V}\left(\bar{r}_{2}\right)=15 \hat{a}_{x}-9 \hat{a}_{y} \\
& \vec{V}\left(\bar{r}_{3}\right)=11 \hat{a}_{x} \\
& \vec{V}\left(\bar{r}_{4}\right)=7 \hat{a}_{x} \\
& \vec{V}\left(\bar{r}_{5}\right)=9 \hat{a}_{x}-4 \hat{a}_{y}
\end{aligned}
$$

The wind velocity in Mundka
The wind velocity in Pitampura
The wind velocity in Patparganj
The wind velocity in Okhla Industrial Estate
The wind velocity in IGI Airport locality

Vector Field Notation (contd.)

- From vector field $\vec{A}(\vec{r})$, we can find the magnitude and direction of the discrete vector \vec{A} that is located at the point defined by position vector \bar{r}.
- This discrete vector \vec{A} does not "extend" from the origin to the point described by position vector \bar{r}. Rather, the discrete vector \vec{A} describes a quantity at that point, and that point only. The magnitude of vector \vec{A} does not have units of distance! The length of the arrow that represents vector \vec{A} is merely symbolic-its length has no direct physical meaning.
- On the other hand, the position vector \bar{r}, being a directed distance, does extend from the origin to a specific point in space. The magnitude of a position vector \bar{r} is distance-the length of the position vector arrow has a direct physical meaning!
- Additionally, we should again note that a vector field need not be static. A dynamic vector field is likewise a function of time, and thus can be described with the notation:

$$
\vec{A}(\bar{r}, \mathrm{t})
$$

The Contour C

- In this class, we will limit ourselves to studying only those contours that are formed when we change the location of a point by varying just one coordinate parameter. In other words, the other two coordinate parameters will remain fixed.

Mathematically, therefore, a contour is described by:
2 equalities (e.g., $x=2, y=-4 ; r=3, \phi=\pi / 4$) AND
1 inequality (e.g., $-1<z<5 ; 0<\theta<\pi / 2$)

- Likewise, we will need to explicitly determine the differential displacement vector $\overline{d l}$ for each contour.

Recall we have studied seven coordinate parameters ($x, y, z, \rho, \phi, r, \theta$). As a result, we can form seven different contours C !

Cartesian Contours

- Say we move a point from $P(x=1, y=2, z=-3)$ to $P(x=1, y=2, z=3)$ by changing only the coordinate variable z from $z=-3$ to $z=3$. In other words, the coordinate values x and y remain constant at $x=1$ and $y=2$.
- We form a contour that is a line segment, parallel to the z-axis!

Note that every point along this segment has coordinate values $x=1$ and $y=2$. As we move along the contour, the only coordinate value that changes is z.

Cartesian Contours (contd.)

- Therefore, the differential directed distance associated with a change in position from z to $z+d z$, is $\overline{d l}=\overline{d z}=\hat{a}_{z} \mathrm{dz}$

Similarly, a line segment parallel to the x-axis (or y-axis) can be formed by changing coordinate parameter x (or y), with a resulting differential displacement vector of $\overline{d l}=\overline{d x}=\hat{a}_{x} \mathrm{dx}$ (or $\overline{d l}=\overline{d y}=\hat{a}_{y} \mathrm{dy}$).

Cartesian Contours (contd.)

The three Cartesian contours are therefore:

1. Line segment parallel to the z-axis

$$
x=c_{x} \quad y=c_{y} \quad c_{z 1} \leq z \leq c_{z 2}
$$

2. Line segment parallel to the y-axis

$$
x=c_{x} \quad z=c_{z} \quad c_{y 1} \leq y \leq c_{y 2}
$$

3. Line segment parallel to the x-axis

$$
y=c_{y} \quad z=c_{z} \quad c_{x 1} \leq x \leq c_{x 2}
$$

$$
\square \overline{d l}=\hat{a}_{x} d x
$$

Cylindrical Contours

- Say we move a point from $\mathrm{P}\left(\rho=1, \phi=45^{\circ}, \mathrm{z}=2\right)$ to $\mathrm{P}\left(\rho=3, \phi=45^{\circ}, \mathrm{z}=2\right)$ by changing only the coordinate variable ρ from $\rho=1$ to $\rho=3$. In other words, the coordinate values ϕ and z remain constant at $\phi=45^{\circ}$ and $z=2$.
- We form a contour that is a line segment, parallel to the $x-y$ plane (i.e., perpendicular to the z-axis).

Cylindrical Contours (contd.)

- Alternatively, say we move a point from $\mathrm{P}\left(\rho=3, \phi=0^{\circ}, \mathrm{z}=2\right)$ to $\mathrm{P}(\rho=3, \phi=$ $90^{\circ}, z=2$) by changing only the coordinate variable ϕ from $\phi=0^{\circ}$ to $\phi=$ 90°. In other words, the coordinate values ρ and z remain constant at $\rho=3$ and $z=2$. We form a contour that is a circular arc, parallel to the $x-y$ plane.

Cylindrical Contours (contd.)

The three cylindrical contours are therefore described as:

1. Line segment parallel to the z-axis

$$
\rho=c_{\rho} \quad \phi=c_{\phi} \quad c_{z 1} \leq z \leq c_{z 2} \quad \square \quad \overline{d l}=\hat{a}_{z} d z
$$

2. Circular arc parallel to the xy-plane

$$
\rho=c_{\rho} \quad z=c_{z} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad \square \quad \overline{d l}=\hat{a}_{\phi} \rho d \phi
$$

3. Line segment parallel to the xy plane

$$
\phi=c_{\phi} \quad z=c_{z} \quad c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad \square \quad \overline{d l}=\hat{a}_{\rho} d \rho
$$

Spherical Contours

- Say we move a point from $P\left(r=0, \theta=60^{\circ}, \phi=45^{\circ}\right)$ to $P\left(r=3, \theta=60^{\circ}, \phi=\right.$ 45°) by changing only the coordinate variable r from $r=0$ to $r=3$. In other words, the coordinate values θ and ϕ remain constant at $\theta=60^{\circ}$ and $\phi=$ 45°.
- We form a contour that is a line segment, emerging from the origin.

Spherical Contours (contd.)

- Alternatively, say we move a point from $\mathrm{P}\left(\mathrm{r}=3, \theta=0^{\circ}, \phi=45^{\circ}\right)$ to $\mathrm{P}(\mathrm{r}=3$, $\theta=90^{\circ}, \phi=45^{\circ}$) by changing only the coordinate variable θ from $\theta=0^{\circ}$ to $\theta=90^{\circ}$. In other words, the coordinate values r and ϕ remain constant at $r=3$ and $\phi=45^{\circ}$

We form a circular arc, whose plane includes the z-axis.

Every point along the arc has coordinate values $r=3$ and $\phi=45^{\circ}$. As we move along the contour, the only coordinate value that changes is θ.

Therefore, the differential directed distance associated with a change in position from θ to $\theta+\mathrm{d} \theta$, is $\overline{d l}=\overline{d \theta}=\hat{a}_{\theta} r d \theta$

Spherical Contours (contd.)

- Finally, we could fix coordinates r and θ and vary coordinate ϕ only-but we already did this in cylindrical coordinates! We again find that a circular arc is generated, an arc that is parallel to the $x-y$ plane.

The three spherical contours are therefore:

1. Circular arc parallel to the xy-plane

$$
r=c_{r} \quad \theta=c_{\theta} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad \square \quad \bar{d}=\hat{a}_{\phi} r \sin \theta d \phi
$$

2. Circular arc in a plane that includes z -axis

$$
r=c_{r} \quad \phi=c_{\phi} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2}
$$

$$
\overline{d l}=\hat{a}_{\theta} r d \theta
$$

3. Line segment directed towards the origin

$$
\theta=c_{\theta} \quad \phi=c_{\phi} \quad c_{r 1} \leq r \leq c_{r 2}
$$

$$
\overline{d l}=\hat{a}_{r} d r
$$

The Differential Surface Vector for Coordinate Systems

- Given that $\overline{d s}=\overline{d l} \times \overline{d m}$, we can determine the differential surface vectors for each of the three coordinate systems.

Cartesian

$$
\overline{d s_{x}}=\overline{d y} \times \overline{d z}=\hat{a}_{x} d y d z
$$

$$
\overline{d s}=\overline{d z} \times \overline{d x}=\hat{a}_{y} d x d z
$$

$$
\overline{d s}=\overline{d x} \times \overline{d y}=\hat{a}_{z} d x d y
$$

It is apparent that these differential surface vectors define a small patch of area on the surface of flat plane.

The Differential Surface Vector for Coordinate Systems

Cylindrical

$$
\overline{d s_{\rho}}=\overline{d \phi} \times \overline{d z}=\hat{a}_{\rho} \rho d \phi d z
$$

$$
\overline{d s_{\phi}}=\overline{d z} \times \overline{d \rho}=\hat{a}_{\phi} d \rho d z
$$

$$
\overline{\overline{d s_{z}}}=\overline{d \rho} \times \overline{d \phi}=\hat{a}_{z} \rho d \rho d \phi
$$

We shall find that $\overline{d s_{\rho}}$ describes a small patch of area on the surface of a cylinder, $\overline{d s_{\phi}}$ describes a small patch of area on the surface of a plane, and $\overline{d s_{z}}$ again describes a small patch of area on the surface of a flat plane.

Spherical

$\overline{d s_{r}}=\overline{d \theta} \times \overline{d \phi}=\hat{a}_{r} r^{2} \sin \theta d \theta d \phi$

$$
\overline{\overline{d s}}=\overline{d \phi} \times \overline{d r}=\hat{a}_{\theta} r \sin \theta d r d \phi
$$

$$
\overline{d s_{\phi}}=\overline{d r} \times \overline{d \theta}=\hat{a}_{\phi} r d r d \theta
$$

We shall find that $\overline{d s_{r}}$ describes a small patch of area on the surface of a sphere, $\overline{d s_{\theta}}$ describes a small patch of area on the surface of a cone, and $\overline{d s_{\phi}}$ again describes a small patch of area on the surface of a plane.

The Surface S

- Although S represents any surface, no matter how complex or convoluted, we will study only basic surfaces. In other words, $\overline{d s}$ will correspond to one of the differential surface vectors from Cartesian, cylindrical, or spherical coordinate systems.
- In this class, we will limit ourselves to studying only those surfaces that are formed when we change the location of a point by varying two coordinate parameters. In other words, the other coordinate parameters will remain fixed.

Mathematically, therefore, a surface is described by:
1 equality (e.g., $x=5$ OR $r=3$) AND 2 inequalities (e.g., $-1<y<5$ and $-2<z<7$ OR $0<\theta<\pi / 2$ and $0<\phi<\pi)$

- Therefore, we will need to explicitly determine the differential surface vector $\overline{d s}$ for each contour.

Cartesian Coordinate Surfaces

2. Flat plane parallel to $x-z$ plane.

$$
\begin{gathered}
y=c_{y} \quad c_{x 1} \leq x \leq c_{x 2} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{\overline{d s}}= \pm \overline{d s_{y}}= \pm \hat{a}_{y} d x d z
\end{gathered}
$$

1. Flat plane parallel to $y-z$ plane.

$$
x=c_{x} \quad c_{y 1} \leq y \leq c_{y 2} \quad c_{z 1} \leq z \leq c_{z 2}
$$

$$
\left.\overline{d s}= \pm \overline{d s_{x}}= \pm \hat{a}_{x} d y d z\right)
$$

3. Flat plane parallel to $x-y$ plane.

$$
\begin{array}{|c}
\begin{array}{|c}
z=c_{z} \\
c_{x 1} \leq x \leq c_{x 2} \quad c_{y 1} \leq y \leq c_{y 2} \\
\\
\hline \overline{d s}= \pm \overline{d s_{y}}= \pm \hat{a}_{z} d x d z
\end{array}
\end{array}
$$

Cylindrical Coordinate Surfaces

1. Circular cylinder centered around the z-axis.

$$
\begin{array}{r}
\rho=c_{\rho} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{d s}= \pm \overline{d s_{\rho}}= \pm \hat{a}_{\rho} \rho d \phi d z
\end{array}
$$

2. Vertical plane extending from the z-axis

$$
\begin{gathered}
\phi=c_{\phi} \quad c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{d s}= \pm \overline{d s_{\phi}}= \pm \hat{a}_{\phi} d \rho d z
\end{gathered}
$$

3. Flat plane parallel to $x-y$ plane.

$$
\begin{gathered}
z=c_{z} \quad c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \\
\overline{d s}= \pm \overline{d s_{z}}=\hat{a}_{z} \rho d \phi d \rho
\end{gathered}
$$

Cylindrical Coordinate Surfaces

Spherical Coordinate Surfaces

1. Sphere centered at the origin.

$$
r=c_{r} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

$$
\overline{d s}= \pm \overline{d s_{r}}= \pm \hat{a}_{r} r^{2} \sin \theta d \theta d \phi
$$

2. Vertical plane extending from the z-axis

$$
\phi=c_{\phi} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2} \quad c_{r 1} \leq r \leq c_{r 2}
$$

$$
\overline{d s}= \pm \overline{d s_{z}}= \pm \hat{a}_{\phi} r d r d \theta
$$

3. A cone with apex at the origin and aligned with the z-axis $\theta=c_{\theta} \quad c_{r 1} \leq r \leq c_{r 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}$

$$
\overline{d s}= \pm \overline{d s_{\theta}}= \pm \hat{a}_{\theta} r \sin \theta d \phi d r
$$

The Volume V

- As we might expect from our knowledge about how to specify a point P (3 equalities), a contour C (2 equalities and 1 inequality), and a surface S (1 equality and 2 inequalities), a volume v is defined by 3 inequalities.

Cartesian

The inequalities:

$$
c_{x 1} \leq x \leq c_{x 2} \quad c_{y 1} \leq y \leq c_{y 2}
$$

$$
\mathrm{c}_{\mathrm{z} 1} \leq \mathrm{z} \leq \mathrm{c}_{\mathrm{z2}}
$$

define a rectangular volume, whose sides are parallel to the $x-y$, $y-z$, and $x-z$ planes.

- The differential volume dv used for constructing this Cartesian volume is:

The Volume V

Cylindrical

The inequalities: $\quad \mathrm{c}_{\rho 1} \leq \rho \leq \mathrm{c}_{\rho 2} \quad \mathrm{c}_{\phi 1} \leq \phi \leq \mathrm{c}_{\phi 2} \quad \mathrm{c}_{\mathrm{z} 1} \leq \mathrm{z} \leq \mathrm{c}_{\mathrm{z} 2}$
defines a cylinder, or some subsection thereof (e.g. a tube!).

- The differential volume dv is used for constructing this cylindrical volume is:

Spherical

The inequalities:

$$
c_{r 1} \leq r \leq c_{r 2} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2}
$$

$$
c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

defines a sphere, or some subsection thereof (e.g., an "orange slice" !).

- The differential volume $\mathbf{d v}$ used for constructing this spherical volume is:

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

$$
\therefore v=\int_{c_{r 1}}^{c_{r 2}} \int_{c_{\theta 1}}^{c_{\theta 2}} \int_{c_{\phi 1}}^{c_{\phi 2}} \rho d \rho d \phi d z
$$

Example: The Volume Integral

Let's evaluate the volume integral: $\iiint_{V} g(\bar{r}) d v$
where $\mathrm{g}(\bar{r})=1$ and the volume v is a sphere with radius R .
In other words, the volume v is described for:

$$
\begin{aligned}
& 0 \leq r \leq R \\
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

- Therefore we use for the differential volume dv:

$$
d v=\overline{d r} \cdot \overline{d \theta} \times \overline{d \phi}=r^{2} \sin \theta d r d \theta d \phi
$$

- Therefore: $\iiint_{v} g(\bar{r}) d \nu=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} r^{2} \sin \theta d r d \theta d \phi=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{R} r^{2} d r=(2 \pi)(2)\left(\frac{R^{3}}{3}\right)$

$$
\therefore \iiint_{v} g(\bar{r}) d v=\frac{4 \pi R^{3}}{3}
$$

Example: The Volume Integral

Q: So what's the volume integral even good for?
A: Generally speaking, the scalar function $g(\bar{r})$ will be a density function, with units of things/unit volume. Integrating $g(\bar{r})$ with the volume integral provides us the number of things within the space v !

For example, let's say $g(\bar{r})$ describes the density of a big swarm of insects, using units of insects/m ${ }^{3}$ (i.e., insects are the things).

Note that $g(\bar{r})$ must indeed be a function of position, as the density of insects changes at different locations
 throughout the swarm.

Example: The Volume Integral

- Now, say we want to know the total number of insects within the swarm, which occupies some space v. We can determine this by simply applying the volume integral!

$$
\text { number of insects in swarm }=\iiint_{V} g(\bar{r}) d v
$$

where space v completely encloses the insect swarm.

