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• Coordinate Transformations 
• Base Vectors 
• Position Vector  
• Contours (Cartesian, Cylindrical, and Spherical) 
• Surfaces (Cartesian, Cylindrical, and Spherical) 
• Volume 
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Coordinate Transformations  

• Say we know the location of a point, or the description of some scalar 
field in terms of Cartesian coordinates (e.g., T (x, y, z)).  

• What if we decide to express this point or this scalar field in terms of 
cylindrical or spherical coordinates instead? 

• We see that the coordinate values z, ρ, r, and θ are all variables of a right 
triangle! We can use our knowledge of trigonometry to relate them to 
each other. 

• In fact, we can completely derive the relationship between all six 
independent coordinate values by considering just two very important 
right triangles!  
• Hint: Memorize these 2 triangles!!! 
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Coordinate Transformations (contd.)  

θ r 

ρ 

z 

Right Triangle #1  
2 2cos cotz r r        

2 2sin tanr z r z       

2 2 cos secr z ec z        
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Coordinate Transformations (contd.)  

Right Triangle #2  

2 2cos cotx y y        

2 2sin tany x x        

1 1 1tan sin cos
y y x

x

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     
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Coordinate Transformations (contd.)  

Combining the results of the two triangles allows us to write 
each coordinate set in terms of each other 

• Cartesian and Cylindrical • Cartesian and Spherical 

cosx   

siny   

z z

2 2x y  

1tan
y

x
   
  

 

z z
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sin siny r    

cosz r  
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Coordinate Transformations  

• Cylindrical and Spherical 

sinr  

 

cosz r  

2 2r z 

1tan
z


   
  

 

 
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Base Vectors 

Q: We know that vector 
quantities (either discrete or field) 

have both magnitude and 
direction. But how do we specify 
direction in 3-D space? Do we use 
coordinate values (e.g., x, y, z )?? 

A: It is very important that you understand that coordinates 
only allow us to specify position in 3-D space. They cannot be 

used to specify direction! 

The most convenient way for us to specify the direction of a vector 
quantity is by using a well-defined orthonormal set of vectors known as 

base vectors. 
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Base Vectors (contd.) 

• Recall that an orthonormal set of unity vectors, say 𝑎 1, 𝑎 2, and 𝑎 3 have 
the following properties: 

• Each vector is a unit vector: 𝑎 1.𝑎 1 = 𝑎 2.𝑎 2 = 𝑎 3.𝑎 3 = 1 

• Each vector is mutually orthogonal: 𝑎 1.𝑎 2 = 𝑎 2.𝑎 3 = 𝑎 3.𝑎 1=0 

• Additionally, a set of base vectors 𝑎 1, 𝑎 2, and 𝑎 3 must be arranged such 
that: 

𝑎 1 × 𝑎 2 = 𝑎 3 𝑎 2 × 𝑎 3 = 𝑎 1 𝑎 3 × 𝑎 1 = 𝑎 2 

𝑎1  

𝑎2  

𝑎3  

All base vectors 𝑎 1, 𝑎 2, and 𝑎 3 must form a 
right-handed, orthonormal set. 

An orthonormal set with this property is 
known as a right handed system. 
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Base Vectors (contd.) 

A: We will define several systematic, mathematically precise methods for 
defining the orientation of base vectors. Generally speaking, we will find 
that the orientation of these base vectors will not be fixed, but will in fact 
vary with position in space (i.e., as a function of coordinate values)! 

Recall that we use unit vectors to define direction. Thus, a set of base 
vectors define three distinct directions in our 3-D space! 

Q: But, what three directions do we use?? I remember, there are an 
infinite number of possible orientations of an orthonormal set!! 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Base Vectors (contd.) 
• Essentially, we will define at each and every point in space a different set 

of base vectors, which can be used to uniquely define the direction of any 
vector quantity at that point! 

Q: Good golly! Defining a different set of base 
vectors for every point in space just seems  

confusing. Why can’t we just fix a set of base 
vectors such that their orientation is the same 

at all points in space? 

However, we will study two other methods where the orientation of base 
vectors is different at all points in space (spherical and cylindrical base 

vectors). We use these two methods to define base vectors because for 
many physical problems, it is actually easier and wiser to do so! 

A: We will in fact study one method for defining base vectors that does in 
fact result in an orthonormal set whose orientation is fixed—the same at 

all points in space (Cartesian base vectors). 
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Base Vectors (contd.) 

For example, consider how we 
define direction on Earth: 

North/South, East/West, Up/Down. 

Each of these directions can be 
represented by a unit vector, and 

the three unit vectors together 
form a set of base vectors. 

Think about, however, how these 
base vectors are oriented! Since we 
live on the surface of a sphere (i.e., 
the Earth), it makes sense for us to 

orient the base vectors with respect 
to the spherical surface. 
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What this means, of course, is that 
each location on the Earth will 

orient its “base vectors” 
differently. This orientation is thus 

different for every point on 
Earth—a method that makes 

perfect sense! 

Base Vectors (contd.) 
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X 

Y 

Z 

Cartesian Base Vectors 
• As the name implies, the Cartesian base vectors are related to the 

Cartesian coordinates. 
• Specifically, the unit vector 𝑎𝑥  points in the direction of increasing x. In 

other words, it points away from the y-z (x=0) plane. 
• Similarly, 𝑎𝑦   and 𝑎𝑧   point in the direction of increasing y and z, 

respectively. 

𝑎𝑦   

𝑎𝑧   

𝑎𝑥   

It was said that the directions of 
base vectors generally vary with 

location in space—Cartesian base 
vectors are the exception! Their 

directions are the same regardless 
of where you are in space. 
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Vector Expansion using Base Vectors 

• Having defined an orthonormal set of base vectors, we can express any 
vector in terms of these unit vectors as: 

𝐴 = Ax𝑎𝑥 + Ay𝑎𝑦 + A𝑧𝑎𝑧  

• Note therefore that any vector can be written as a sum of three vectors! 
• Each of these three vectors point in one of the three orthogonal 

directions 𝑎𝑥 , 𝑎𝑦  , and 𝑎𝑧 . 
• The magnitude of each of these three vectors are determined by the 

scalar values Ax, Ay, and Az. 

• The values Ax, Ay, and Az are called the scalar components of vector A. 

• The vectors Ax𝑎 𝑥, Ay𝑎 𝑦 and Az𝑎 𝑧  are called the vector components of A. 

A: Use the dot product to evaluate the expression above! 

Q: What the heck are scalar components Ax, Ay, and Az and how do we 
determine them ?? 
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Vector Expansion using Base Vectors (contd.) 
• Begin by taking the dot product of the above expression with unit vector 𝑎 𝑥 

𝐴 . 𝑎𝑥 = Ax𝑎𝑥 + Ay𝑎𝑦 + A𝑧𝑎𝑧 . 𝑎𝑥  Ax = 𝐴 . 𝑎𝑥  

• In other words, the scalar component Ax is just the value of the dot 

product of vector A and base vector 𝑎 𝑥. Similarly, we find that: 

Ay = 𝐴 . 𝑎𝑦  Az = 𝐴 . 𝑎 𝑧 

• Thus, any vector can be expressed specifically as: 

𝐴 = 𝐴 . 𝑎𝑥 𝑎𝑥 + 𝐴 . 𝑎𝑦 𝑎𝑦 + 𝐴 . 𝑎𝑧 𝑎𝑧  
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Vector Expansion using Base Vectors (contd.) 

• For example, consider a vector  A, along with two different sets of 
orthonormal base vectors: 

A 
𝑎𝑦  

𝑎𝑥  

𝑎2  

𝑎1  

• The scalar components of vector A, in the direction of each base vector are: 
Ax = 𝐴 . 𝑎𝑥  = 2.0 

Ay = 𝐴 . 𝑎𝑦  = 1.5 

Az = 𝐴 . 𝑎 𝑧 = 0.0 

A1 = 𝐴 . 𝑎1  = 0.0 

A2 = 𝐴 . 𝑎2  = 2.5 

A3 = 𝐴 . 𝑎 3 = 0.0 

• Using the first set of base vectors, we can write the vector  A as: 

𝐴 = 𝐴𝑥𝑎𝑥 + Ay𝑎𝑦 + A𝑧𝑎𝑧 =2.0𝑎𝑥  + 1.5𝑎𝑦  
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• It is very important to realize that: 𝐴 =2.0𝑎𝑥  + 1.5𝑎𝑦 = 2.5𝑎2  

In other words, both expressions represent exactly the same 
vector! The difference in the representations is a result of using 

different base vectors, not because vector  A is somehow 
“different” for each representation. 

Vector Expansion using Base Vectors (contd.) 

• using the second set, we find that: 𝐴 = A1𝑎1 + A2𝑎2 + A3𝑎3 = 2.5𝑎2  
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Spherical Base Vectors (contd.) 

• Spherical base vectors are the “natural” base vectors of a sphere. 

•  𝑎𝑟  points in the direction of increasing r. In other words 𝑎𝑟   points 
away from the origin. This is analogous to the direction we call up. 

• 𝑎θ   points in the direction of increasing θ. This is analogous to the 
direction we call south. 

• 𝑎 ϕ a points in the direction of increasing φ. This is analogous to the 
direction we call east. 

𝑎𝑟  

𝑎θ   

𝑎ϕ   
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IMPORTANT NOTE: The directions of spherical base vectors are dependent on 
position. First you must determine where you are in space (using coordinate 

values), then you can define the directions of 𝑎𝑟 , 𝑎 ϕ, and 𝑎θ . 

Reminder: Cartesian base vectors are special, in that their directions are 
independent of location—they have the same directions throughout all space. 

• Thus, it is prudent to define spherical base vectors in terms of Cartesian 
base vectors. It can be shown that: 

 𝑎𝑟  . 𝑎𝑥  = sin θ cosϕ 
 𝑎𝑟  . 𝑎𝑦  = sin θ sinϕ 

 𝑎𝑟  . 𝑎𝑧  = cos θ  

 𝑎θ  . 𝑎𝑥  = cos θ cosϕ 
 𝑎θ  . 𝑎𝑦  = cos θ sinϕ 

 𝑎θ  . 𝑎𝑧  = −sin θ  

 𝑎 ϕ. 𝑎𝑥  = −sinϕ 
𝑎 ϕ. 𝑎𝑦  =  cosϕ 

𝑎 ϕ. 𝑎𝑧  = 0 

Spherical Base Vectors (contd.) 
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• any vector  A can be written as: 𝐴 = 𝐴 . 𝑎𝑥 𝑎𝑥 + 𝐴 . 𝑎𝑦 𝑎𝑦 + 𝐴 . 𝑎𝑧 𝑎𝑧  

• Therefore, we can write unit vector 𝑎𝑟   as: 

𝑎𝑟 = 𝑎𝑟 . 𝑎𝑥 𝑎𝑥 + 𝑎𝑟 . 𝑎𝑦 𝑎𝑦 + 𝑎𝑟 . 𝑎𝑧 𝑎𝑧  

𝑎𝑟 = sin θ cosϕ𝑎𝑥 + sin θ sinϕ𝑎𝑦 + cos θ 𝑎𝑧  

• For example, at the point in space r = 7.239, θ = 90ο and φ =0ο, we 
find that 𝑎𝑟  =  𝑎𝑥 . In other words, at this point in space, the direction 
𝑎𝑟  points in the x-direction. 

• Or, at the point in space r = 2.735, θ = 90ο and φ =90ο, we find that 
𝑎𝑟  = 𝑎𝑦 . In other words, at this point in space, 𝑎𝑟   points in the y-
direction. 

Spherical Base Vectors (contd.) 

This result explicitly shows that 𝑎𝑟  is a function of θ and φ. 
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• Additionally, we can write 𝑎ϕ , and 𝑎θ   as: 

𝑎θ = 𝑎θ . 𝑎𝑥 𝑎𝑥 + 𝑎θ . 𝑎 𝑦 𝑎 𝑦 + 𝑎θ . 𝑎𝑧 𝑎𝑧  

𝑎ϕ = 𝑎ϕ .𝑎𝑥 𝑎𝑥 + 𝑎ϕ .𝑎 𝑦 𝑎 𝑦 + 𝑎ϕ .𝑎𝑧 𝑎𝑧  

• Alternatively, we can write Cartesian base vectors in terms of spherical 
base vectors, i.e., 

𝑎 𝑥 = 𝑎 𝑥. 𝑎𝑟 𝑎𝑟 + 𝑎 𝑥. 𝑎θ  𝑎θ + 𝑎 𝑥. 𝑎 ϕ 𝑎 ϕ 

𝑎 𝑦 = 𝑎 𝑦. 𝑎𝑟 𝑎𝑟 + 𝑎 𝑦. 𝑎θ  𝑎θ + 𝑎 𝑦. 𝑎 ϕ 𝑎 ϕ 

𝑎 𝑧 = 𝑎 𝑧. 𝑎𝑟 𝑎𝑟 + 𝑎 𝑧. 𝑎θ  𝑎θ + 𝑎 𝑧. 𝑎 ϕ 𝑎 ϕ 

Spherical Base Vectors (contd.) 
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Cylindrical Base Vectors 

• Cylindrical base vectors are the natural base vectors of a cylinder. 

• 𝑎ρ  points in the direction of increasing ρ. In other words, 𝑎ρ  points 
away from the z-axis. 

• 𝑎 ϕ points in the direction of increasing φ. This is precisely the same 
base vector we described for spherical base vectors.  

• 𝑎𝑧   points in the direction of increasing z. This is precisely the same 
base vector we described for Cartesian base vectors. 

It is evident, that like spherical base 
vectors, the cylindrical base vectors are 
dependent on position. A vector that 

points away from the z-axis (e.g., 𝑎 ρ), will 
point in a direction that is dependent on 

where we are in space! 
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Cylindrical Base Vectors (contd.) 
• We can express cylindrical base vectors in terms of Cartesian base vectors. 

First, we find that: 

 𝑎ρ  . 𝑎𝑥  = cosϕ  
 𝑎ρ  . 𝑎𝑦  = sinϕ 

 𝑎ρ  . 𝑎𝑧  = 0 

 𝑎ϕ  . 𝑎𝑥  = −sinϕ 
 𝑎ϕ  . 𝑎𝑦  = cosϕ 

 𝑎ϕ  . 𝑎𝑧  = 0 

 𝑎𝑧  . 𝑎𝑥  = 0 
 𝑎 𝑧 . 𝑎𝑦  = 0 

 𝑎𝑧  . 𝑎𝑧  = 1 

• We can use these results to write cylindrical base vectors in terms of 
Cartesian base vectors, or vice versa! 

𝑎ρ = 𝑎ρ . 𝑎𝑥 𝑎𝑥 + 𝑎ρ . 𝑎𝑦 𝑎𝑦 + 𝑎ρ . 𝑎𝑧 𝑎𝑧  

𝑎ρ = cosϕ𝑎𝑥 + sinϕ𝑎𝑦  

• or 
𝑎𝑥 = 𝑎𝑥 . 𝑎ρ 𝑎ρ + 𝑎𝑦 . 𝑎ρ 𝑎ρ + 𝑎𝑧 . 𝑎ρ 𝑎ρ  

𝑎𝑥 = cosϕ𝑎ρ − sinϕ𝑎ϕ  
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• Finally, we can write cylindrical base vectors in terms of spherical base 
vectors, or vice versa, using the following relationships: 

 𝑎ρ  . 𝑎𝑟  = sin θ  
 𝑎ρ  . 𝑎θ  = cos θ 

 𝑎ρ  . 𝑎ϕ  
= 0 

 𝑎ϕ  . 𝑎𝑟  = 0 
 𝑎ϕ  . 𝑎θ  = 0 

 𝑎ϕ  . 𝑎ϕ  
= 1 

 𝑎𝑧  . 𝑎𝑟  = cos θ 
 𝑎 𝑧 . 𝑎θ  = −sin θ 

 𝑎𝑧  . 𝑎ϕ  
= 0 

• For example: 

𝑎ρ = 𝑎ρ . 𝑎𝑟 𝑎𝑟 + 𝑎ρ . 𝑎θ 𝑎θ + 𝑎ρ . 𝑎ϕ 𝑎ϕ  

𝑎ρ = sin θ 𝑎𝑟 + cos θ 𝑎θ  

• or 
𝑎θ = 𝑎θ . 𝑎ρ 𝑎ρ + 𝑎θ . 𝑎ϕ 𝑎ϕ + 𝑎θ . 𝑎𝑧 𝑎𝑧  

𝑎θ = cos θ 𝑎ρ −sin θ 𝑎𝑧  

Cylindrical Base Vectors (contd.) 
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Vector Algebra Using Orthonormal Base Vectors 

Q: Just why do we express a 
vector in terms of 3 orthonormal 

base vectors? Doesn’t this just 
make things even more 

complicated ?? 

A: Actually, it makes things much simpler. The evaluation of vector 
operations such as addition, subtraction, multiplication, dot product, and 
cross product all become straightforward if all vectors are expressed 
using the same set of base vectors. 
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Dot Product 

Say we take the dot product of 𝐴  and 𝐵: 
Q: I thought 

this was suppose 
to make things 

easier !?! 
   ˆ ˆ ˆ ˆ ˆ ˆ. .x x y y z z x x y y z zA B A a A a A a B a B a B a    

 

 

 

ˆ ˆ ˆ ˆ.

ˆ ˆ ˆ ˆ.

ˆ ˆ ˆ ˆ.

x x x x y y z z

y y x x y y z z

z z x x y y z z

A a B a B a B a

A a B a B a B a

A a B a B a B a

  

  

  

     

     

     

ˆ ˆ ˆ ˆ ˆ ˆ. . .

ˆ ˆ ˆ ˆ ˆ ˆ. . .

ˆ ˆ ˆ ˆ ˆ ˆ. . .

x x x x x y x y x z x z

y x y x y y y y y z y z

z x z x z y z y z z z z

A B a a A B a a A B a a

A B a a A B a a A B a a

A B a a A B a a A B a a

  

  

  

Vector Algebra Using Orthonormal Base Vectors (contd.) 
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A: Be patient! Recall that these are orthonormal base vectors, therefore: 

ˆ ˆ ˆ ˆ ˆ ˆ. . . 1x x y y z za a a a a a   ˆ ˆ ˆ ˆ ˆ ˆ. . . 0x y y z z xa a a a a a  

• As a result, our dot product expression reduces to this simple expression: 

. x x y y z zA B A B A B A B  

Vector Algebra Using Orthonormal Base Vectors (contd.) 

We can apply this to the expression for determining the magnitude 
of a vector: 

2
2 2 2. x x zA A A A A A    2 2 2. x x zA A A A A A   



Indraprastha Institute of 

Information Technology Delhi ECE230 

• Let us revisit  previous example, where we expressed a vector using two 
different sets of basis vectors: 

Q: Hey! We get the same answer from both expressions; is this a 
coincidence? 

A: No! Remember, both expressions represent the same vector, only 

using different sets of base vectors. The magnitude of vector 𝐴  is 2.5, 

regardless of how we choose to express 𝐴 . 

ˆ ˆ2.0 1.5x yA a a  ˆ2.5 yA a

• Therefore, the magnitude of 𝐴  is determined to be: 

2 22 1.5 2.5A   
22.5 2.5A  

Vector Algebra Using Orthonormal Base Vectors (contd.) 
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P(x, y, z)  

The Position Vector  

• Consider a point whose location in space is specified with Cartesian 
coordinates (e.g., P(x, y, z)). Now consider the directed distance (a vector 
quantity!) extending from the origin to this point. 

𝑟  

This particular directed distance—a 
vector beginning at the origin and 

extending outward to a point—is a very 
important and fundamental directed 

distance known as the position vector 𝑟   

• Using the Cartesian coordinate system, the position 
vector can be explicitly written as: 

ˆ ˆ ˆ
x y zr xa ya za  
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The Position Vector (contd.)  
• Note that given the coordinates of some point (e.g., x =1, y =2, z =-3), we 

can easily determine the corresponding position vector (e.g., 𝑟 = 𝑎 𝑥 +
2𝑎 𝑦 − 3𝑎 𝑧). 

• Moreover, given some specific position vector (e.g., 𝑟 = 4𝑎 𝑦 − 2𝑎 𝑧), we 
can easily determine the corresponding coordinates of that point (e.g., x 
=0, y =4, z =-2). 

• In other words, a position vector 𝑟   is an alternative way to denote the 
location of a point in space! We can use three coordinate values to 
specify a point’s location, or we can use a single position vector 𝑟 . 

𝑃(𝑟 ) 
I see! The position vector is essentially 

a pointer. Look at the end of the 
vector, and you will find the point 

specified! 
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The magnitude of 𝑟  

Q: Hey, this makes perfect sense! 
Doesn’t the coordinate value r have a 
physical interpretation as the distance 

between the point and the origin? 

• Note the magnitude of any and all position vectors is: 

2 2 2.r r r x y z r    

A: That’s right! The magnitude of a directed distance vector is equal to the 
distance between the two points—in this case the distance between the 
specified point and the origin! 
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Alternative forms of the position vector 
 

• Be careful! Although the position vector is correctly expressed as: 

• It is NOT CORRECT to express the position vector as: 

ˆ ˆ ˆ
x y zr xa ya za  

ˆ ˆ ˆ
zr a a za    

ˆ ˆ ˆ
rr ra a a    

NEVER, EVER express the 
position vector in either 

of these two ways! 

It should be readily apparent that the two expression above cannot 
represent a position vector—because neither is even a directed 

distance! 
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Q: Why sure—it is of course readily 
apparent to me—but why don’t you 
go ahead and explain it to those with 

less insight! 

Alternative forms of the position vector (contd.) 

A: Recall that the magnitude of the position vector 𝑟  has units of distance. 
Thus, the scalar components of the position vector must also have units of 
distance (e.g., meters). The coordinates x, y, z, ρ and r do have units of 
distance, but coordinates θ and ϕ do not. 

Thus, the vectors 𝜃𝑎 𝜃 and ϕ𝑎 ϕ  cannot be vector components of a 
position vector—or for that matter, any other directed distance! 
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• Instead, we can use coordinate transforms to show that: 

Alternative forms of the position vector (contd.) 

ˆ ˆ ˆ
x y zr xa ya za  

ˆ ˆ ˆcos sinx y za a za     

ˆ ˆ ˆsin cos sin sin cosx y zr a r a r a      

ALWAYS use one of these three expressions of a position vector!! 

Note that in each of the three expressions above, we use 
Cartesian base vectors. The scalar components can be expressed 
using Cartesian, cylindrical, or spherical coordinates, but we must 

always use Cartesian base vectors. 
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Q: Why must we always use 
Cartesian base vectors? You 

said that we could express any vector 
using spherical or base vectors. 

Doesn’t this also apply to position 
vectors? 

Alternative forms of the position vector (contd.) 

A: The reason we only use Cartesian base vectors for constructing a 
position vector is that Cartesian base vectors are the only base vectors 

whose directions are fixed—independent of position in space! 
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Applications of the Position Vector  

• Position vectors are particularly useful when we need to determine the 
directed distance between two arbitrary points in space. 

PA(x, y, z)  PB(x, y, z)  

𝑟𝐴  𝑟𝐵  

𝑅 𝐴𝐵 

If the location of point PA is denoted 
by position vector 𝑟𝐴 , and the 
location of point PB by position 
vector 𝑟𝐵  , then the directed distance 
from point PA to point PB, is: 

AB B AR r r 

We can use this directed distance 𝑅 𝐴𝐵 to 
describe much about the relative locations 

of point PA and PB! 
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• For example, the physical distance between these two points is simply 
the magnitude of this directed distance. 

• Likewise, we can specify the direction toward point PB, with respect to 
point PA, by defining the unit vector 𝑎 𝐴𝐵: 

PA(x, y, z)  PB(x, y, z)  

𝑟𝐴  
𝑟𝐵  

d 

Application of the Position Vector  

AB B Ad R r r  

𝑎 𝐴𝐵 

ˆ AB B A
AB

B AAB

R r r
a

r rR


 


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𝑉(𝑟 1) 

𝑉(𝑟 2) 

𝑉(𝑟 3) 

𝑉(𝑟 4) 

𝑉(𝑟 5) 

𝑎 𝑥 

𝑎 𝑦 𝑟1  𝑟2  

𝑟3  

𝑟4  
𝑟5  

• Consider the vector field 𝑉(𝑟 ), which describes the wind velocity across 
the state of Delhi. 

In this map, the 
origin has been 

placed at 
Connaught Place. 
The locations of 
Delhi locality can 
thus be identified 

using position 
vectors (units in 

kms) 

Vector Field Notation 
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Vector Field Notation (contd.)  

1
ˆ ˆ400 20x yr a a  

2
ˆ ˆ90 70x yr a a  

3
ˆ ˆ30 5x yr a a 

4
ˆ ˆ40 90x yr a a 

5
ˆ ˆ130 70x yr a a  

The location of  Mundka 

The location of  Pitampura 

The location of  Patparganj 

The location of  Okhla Industrial Estate 

The location of  IGI Airport locality  

• Evaluating the vector field 𝑉(𝑟 ) at these locations provides the wind 
velocity at each Delhi locality (units of kmph). 

 1
ˆ ˆ15 17x yV r a a 

 2
ˆ ˆ15 9x yV r a a 

 3
ˆ11 xV r a

 4
ˆ7 xV r a

 5
ˆ ˆ9 4x yV r a a 

The wind velocity in Mundka 

The wind velocity in  Pitampura 

The wind velocity in Patparganj 

The wind velocity in Okhla Industrial Estate 

The wind velocity in IGI Airport locality 
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• From vector field 𝐴 (𝑟 ), we can find the magnitude and direction of the 

discrete vector 𝐴  that is located at the point defined by position vector 𝑟 . 

• This discrete vector 𝐴  does not “extend” from the origin to the point 

described by position vector 𝑟 . Rather, the discrete vector 𝐴  describes a 

quantity at that point, and that point only. The magnitude of vector 𝐴  does 
not have units of distance! The length of the arrow that represents vector 

𝐴  is merely symbolic—its length has no direct physical meaning.  
• On the other hand, the position vector 𝑟 , being a directed distance, does 

extend from the origin to a specific point in space. The magnitude of a 
position vector 𝑟   is distance—the length of the position vector arrow has 
a direct physical meaning! 

• Additionally, we should again note that a vector field need not be static. A 
dynamic vector field is likewise a function of time, and thus can be 
described with the notation: 

Vector Field Notation (contd.)  

𝐴 (𝑟 , t)  
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• In this class, we will limit ourselves to studying only those contours that 
are formed when we change the location of a point by varying just one 
coordinate parameter. In other words, the other two coordinate 
parameters will remain fixed. 

The Contour C 

Mathematically, therefore, a contour is described by: 

2 equalities (e.g., x =2, y =-4; r =3, ϕ =π/4) 

1 inequality (e.g., -1 < z < 5; 0 < θ < π/2) 

AND 

• Likewise, we will need to explicitly determine the differential 
displacement vector 𝑑𝑙   for each contour. 

Recall we have studied seven coordinate parameters (x, y, z, ρ, ϕ, r, θ ). As 
a result, we can form seven different contours C! 
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Cartesian Contours 

• Say we move a point from P(x =1, y =2, z =-3) to P(x =1, y =2, z=3) by 
changing only the coordinate variable z from z =-3 to z=3. In other words, 
the coordinate values x and y remain constant at x = 1 and y = 2. 

• We form a contour that is a line segment, parallel to the z-axis! 

x 

y 

z 

C 

P(1, 2, 3) 

P(1, 2, -3) 

Note that every point along 
this segment has coordinate 
values x =1 and y =2. As we 

move along the contour, the 
only coordinate value that 

changes is z. 
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C 

P(1, 2, 3) 

P(1, 2, -3) 
x 

y 

z 

• Therefore, the differential directed distance associated with a change in 
position from z to z +dz, is 𝑑𝑙  = 𝑑𝑧 = 𝑎 𝑧dz 

𝑑𝑧 

Cartesian Contours (contd.) 

Similarly, a line segment parallel to the 
x-axis (or y-axis) can be formed by 

changing coordinate parameter x (or y), 
with a resulting differential 

displacement vector of 𝑑𝑙  = 𝑑𝑥 = 𝑎 𝑥dx 
(or 𝑑𝑙  = 𝑑𝑦 = 𝑎 𝑦dy). 
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The three Cartesian contours are therefore: 

1. Line segment parallel to the z-axis 

2. Line segment parallel to the y-axis 

3. Line segment parallel to the x-axis 

Cartesian Contours (contd.) 

xx c yy c 1 2z zc z c 

xx c
zz c 1 2y yc y c 

yy c
zz c 1 2x xc x c 

ˆ
zdl a dz

ˆ
ydl a dy

ˆ
xdl a dx
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Cylindrical Contours 
• Say we move a point from P(ρ =1, ϕ = 45ο, z =2) to P(ρ =3, ϕ = 45ο, z =2) by 

changing only the coordinate variable ρ from ρ =1 to ρ =3. In other words, 
the coordinate values φ and z remain constant at ϕ = 45ο and z =2. 

• We form a contour that is a line segment, parallel to the x-y plane (i.e., 
perpendicular to the z-axis).  

x 

y 

z 
P(1, 45ο, 2) 

P(3, 45ο, 2) 

C 

Note that every point along this 
segment has coordinate values ϕ 
= 45ο and z =2. As we move along 
the contour, the only coordinate 

value that changes is ρ. 

 𝑑ρ 

Therefore, the differential directed distance 
associated with a change in position from ρ 

to ρ+dρ, is 𝑑𝑙  = 𝑑ρ = 𝑎 ρdρ 
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x 

y 

z 

Cylindrical Contours (contd.) 
• Alternatively, say we move a point from P(ρ =3, ϕ = 0ο, z =2) to P(ρ =3, ϕ = 

90ο, z =2) by changing only the coordinate variable φ from ϕ = 0ο to ϕ = 
90ο. In other words, the coordinate values ρ and z remain constant at ρ =3 
and z =2. We form a contour that is a circular arc, parallel to the x-y plane. 

P(3, 0ο, 2) 

P(3, 90ο, 2) 

C 

Note: if we move from φ = 0ο to 
ϕ = 360ο, a complete circle is 

formed around the z-axis. 

Every point along the arc has 
coordinate values ρ = 3 and z =2. 
As we move along the contour, 
the only coordinate value that 

changes is ϕ. 

 𝑑ϕ 

Therefore, the differential directed distance associated with a 
change in position from ϕ to ϕ+dϕ is 𝑑𝑙  = 𝑑φ = 𝑎 φρdφ  
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The three cylindrical contours are therefore described as: 

1. Line segment parallel to the z-axis 

2. Circular arc parallel to the xy-plane 

3. Line segment parallel to the xy plane 

c  c  1 2z zc z c  ˆ
zdl a dz

c 
zz c 1 2c c  

c  zz c
1 2c c  

ˆdl a d 

ˆdl a d 

Cylindrical Contours (contd.) 
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Spherical Contours  

• Say we move a point from P(r =0, θ = 60ο, ϕ = 45ο) to P(r =3, θ = 60ο, ϕ = 
45ο) by changing only the coordinate variable r from r=0 to r =3. In other 
words, the coordinate values θ and ϕ remain constant at θ = 60ο  and ϕ = 
45ο. 

• We form a contour that is a line segment, emerging from the origin. 

C 

P(0, 60ο, 45ο) 

P(3, 60ο, 45ο) 

x 

y 

z Every point along the line segment 
has coordinate values θ = 60ο  and 
ϕ = 45ο. As we move along the 

contour, the only coordinate value 
that changes is r.  𝑑𝑟 

Therefore, the differential directed distance 
associated with a change in position from  r  

to r+dr, is 𝑑𝑙  = 𝑑𝑟 = 𝑎 𝑟dr 
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P(3, 0ο, 45ο) 

P(3, 90ο, 45ο) x 

y 

z 

• Alternatively, say we move a point from P(r =3, θ = 0 ο, ϕ = 45ο) to P(r =3, 
θ = 90ο, ϕ = 45ο) by changing only the coordinate variable θ from θ = 0 ο 
to θ =90ο. In other words, the coordinate values r and ϕ remain constant 
at r = 3 and ϕ = 45ο 

Spherical Contours (contd.) 

We form a circular arc, whose plane 
includes the z-axis. 

Every point along the arc has 
coordinate values r = 3 and ϕ = 45ο. As 
we move along the contour, the only 
coordinate value that changes is θ. 

 𝑑θ 

Therefore, the differential directed distance 
associated with a change in position from θ 

to θ+dθ, is 𝑑𝑙  = 𝑑θ = 𝑎 θ𝑟𝑑θ 
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• Finally, we could fix coordinates r and θ and vary coordinate φ only—but 
we already did this in cylindrical coordinates! We again find that a 
circular arc is generated, an arc that is parallel to the x-y plane. 

Spherical Contours (contd.) 

The three spherical contours are therefore: 

3. Line segment directed towards the origin 

1. Circular arc parallel to the xy-plane 

2. Circular arc in a plane that includes z-axis 

rr c c  1 2c c  

rr c c  1 2c c  

c  c  1 2r rc r c 

ˆ sindl a r d  

ˆdl a rd 

ˆ
rdl a dr
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The Differential Surface Vector for Coordinate Systems 

• Given that 𝑑𝑠 = 𝑑𝑙 × 𝑑𝑚 , we can determine the differential surface 
vectors for each of the three coordinate systems. 

𝑑𝑙   

𝑑𝑚  

𝑑𝑠 = 𝑑𝑙 × 𝑑𝑚  

Cartesian 

ˆ
x xds dy dz a dydz  

ˆ
y yds dz dx a dxdz  

ˆ
z zds dx dy a dxdy  

It is apparent that these differential surface 
vectors define a small patch of area on the 

surface of flat plane. 
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We shall find that 𝑑𝑠ρ describes a small patch of area on the surface of a 
cylinder, 𝑑𝑠ϕ describes a small patch of area on the surface of a plane, and 
𝑑𝑠𝑧 again describes a small patch of area on the surface of a flat plane. 

The Differential Surface Vector for Coordinate Systems 

Cylindrical 

ˆds d dz a d dz      ˆds dz d a d dz     ˆ
z zds d d a d d      

Spherical 

We shall find that 𝑑𝑠𝑟 describes a small patch of area on the surface of a 
sphere, 𝑑𝑠θ describes a small patch of area on the surface of a cone, and  
𝑑𝑠ϕ again describes a small patch of area on the surface of a plane. 

2ˆ sinr rds d d a r d d       ˆ sinds d dr a r drd      ˆds dr d a rdrd    
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• Although S represents any surface, no matter how complex or convoluted, 
we will study only basic surfaces. In other words, 𝑑𝑠 will correspond to one 
of the differential surface vectors from Cartesian, cylindrical, or spherical 
coordinate systems. 

The Surface S 

• In this class, we will limit ourselves to studying only those surfaces that are 
formed when we change the location of a point by varying two coordinate 
parameters. In other words, the other coordinate parameters will remain 
fixed. 

Mathematically, therefore, a surface is described by: 
 

1 equality (e.g., x=5   OR   r = 3)     AND     2 inequalities (e.g., -1 < y < 5  and 
-2 < z < 7    OR     0 < θ < π/2  and   0 < φ < π) 

• Therefore, we will need to explicitly determine the differential surface 
vector 𝑑𝑠 for each contour. 
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Cartesian Coordinate Surfaces 

ˆ
x xds dy dz a dydz  

ˆ
z zds dx dy a dxdy   1. Flat plane parallel to y-z plane. 

xx c 1 2y yc y c  1 2z zc z c 

ˆ
x xds ds a dydz   

2. Flat plane parallel to x-z plane. 

yy c
1 2x xc x c  1 2z zc z c 

ˆ
y yds ds a dxdz   

3. Flat plane parallel to x-y plane. 

zz c
1 2x xc x c  1 2y yc y c 

ˆ
y zds ds a dxdz   

ˆ
y yds dz dx a dxdz  
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Cylindrical Coordinate Surfaces 

𝑎 ρ 

𝑎 ϕ 

𝑎 𝑧 

1. Circular cylinder centered  around the z-axis. 

c 
1 2c c   1 2z zc z c 

ˆds ds a d dz     

2. Vertical plane extending from the z-axis 

c 
1 2c c   1 2z zc z c 

ˆds ds a d dz     

3. Flat plane parallel to x-y plane. 

zz c 1 2c c   1 2c c  

ˆ
z zds ds a d d    
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Cylindrical Coordinate Surfaces 

0z 

 

 

Now let’s see if you’ve been 
paying attention! Determine 

the two inequalities that 
define this flat surface. 
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Spherical Coordinate Surfaces 

sinr d 

rd
dr

r

1. Sphere centered at the origin. 

rr c
1 2c c   1 2c c  

2ˆ sinr rds ds a r d d     

3. A cone with apex at the origin and aligned with the z-axis 

c 
1 2r rc r c  1 2c c  

ˆ sinds ds a r d dr      

2. Vertical plane extending from the z-axis 

c 
1 2c c   1 2r rc r c 

ˆ
zds ds a rdrd    
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The Volume V 

• As we might expect from our knowledge about how to specify a point P (3 
equalities), a contour C (2 equalities and 1 inequality), and a surface S (1 
equality and 2 inequalities), a volume v is defined by 3 inequalities. 

Cartesian 

The inequalities: cx1 ≤ x ≤cx2             cy1 ≤ y ≤cy2                      cz1 ≤ z ≤cz2 

define a rectangular volume, whose sides are parallel to the x-y, 
y-z, and x-z planes. 

• The differential volume dv used for constructing this Cartesian volume is: 

dv =dxdydz 
22 2

1 1 1

yx z

x y z

cc c

c c c

v dxdydz    
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Cylindrical 
The inequalities: cρ1 ≤ ρ ≤ cρ2         cφ1 ≤ φ ≤ cφ2         cz1 ≤ z ≤cz2 

defines a cylinder, or some subsection thereof (e.g. a tube!). 

The Volume V 

• The differential volume dv is used for constructing this cylindrical volume 
is: dv = ρdρdφdz 2 2 2

1 1 1

z

z

c c c

c c c

v d d dz

 

 

      

Spherical 
The inequalities: cr1  ≤ r ≤cr2           cθ1 ≤ θ ≤ cθ2               cφ1 ≤ φ ≤ cφ2 

defines a sphere, or some subsection thereof (e.g., an “orange slice” !). 

• The differential volume dv used for constructing this spherical volume is: 

dv = r2 sinθ drdθdφ 222

1 1 1

r

r

ccc

c c c

v d d dz



 

      
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Example: The Volume Integral 

where g(𝑟 ) =1 and the volume v is a sphere with radius R. 

Let’s evaluate the volume integral: ( )
v

g r dv

In other words, the volume v is described for: 0 r R 

0   

0 2  

• Therefore we use for the differential volume dv: 

2. sindv dr d d r drd d      

2

2

0 0 0

( ) sin

R

v

g r dv r drd d

 

     • Therefore: 
2

2

0 0 0

sin

R

d d r dr

 

        
3

2 2
3

R


 
  

 

34
( )

3
v

R
g r dv


 
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Q: So what’s the volume integral even good for? 

A: Generally speaking, the scalar function 𝑔(𝑟 ) will be a density function, 
with units of things/unit volume. Integrating 𝑔(𝑟 ) with the volume integral 
provides us the number of things within the space v! 

For example, let’s say 𝑔(𝑟 ) describes the 
density of a big swarm of insects, using 
units of insects/m3 (i.e., insects are the 
things).  

Example: The Volume Integral 

Note that 𝑔(𝑟 ) must indeed be a 
function of position, as the density of 
insects changes at different locations 
throughout the swarm.  
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• Now, say we want to know the total number of insects within the swarm, 
which occupies some space v. We can determine this by simply applying 
the volume integral! 

where space v completely encloses the 
insect swarm. 

number of insects in swarm ( )
v

g r dv 

Example: The Volume Integral 


