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• Reflection of Plane Wave at Oblique Incidence (Snells’ 

Law, Brewster’s Angle, Parallel Polarization, 
Perpendicular Polarization etc.) 

• Introduction to RF/Microwave  
• Introduction to Transmission Lines   
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Introduction 
• One can’t expect plane waves to be incident normally on a plane in all 

types of applications.  
• Therefore one must consider the general problem of a plane wave 

propagating along a specified axis that is arbitrarily located relative to a 
rectangular coordinate system.  

Where: ˆ ˆ ˆ
x x y y z za a a      ˆ ˆ ˆ

x y zr xa ya za  
2 2 2 2

x y z     

( , ) cos( . )oE r t E r t  
• The most general form of a plane wave in a 

lossless media is given by:  

One can deduce Maxwell’s equations in the following form: 

E H   H E    . 0H  . 0E 

They show two things: (i) 𝐸,𝐻 and 𝛽  are 

orthogonal, (ii) 𝐸 and 𝐻 lie on the same plane 
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Introduction (contd.) 

ˆ1 a E
H E


 


  • The corresponding magnetic field is: 

. tanx y zr x y z cons t      • Furthermore: 

Ray representation of 
oblique incidence  

Wavefront representation 
of oblique incidence  
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Reflection at Oblique Incidence  

𝛽 𝑖  

𝛽 𝑟  𝛽 𝑡 

• The plane defined by the propagation vector 𝛽  and a unit normal vector 
𝑎 𝑛to the boundary is called the plane of incidence. 

• The angle between 𝛽  and 𝑎 𝑛 is the angle of incidence. 

cos( )i io ix iy iz iE E x y z t      

cos( )r ro rx ry rz rE E x y z t      

cos( )t to tx ty tz tE E x y z t      

Where: 𝛽𝑖 , 𝛽𝑟  and 𝛽𝑡 will have 
normal and tangential 

components to the plane of 
incidence. 
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Reflection at Oblique Incidence (contd.)  

𝛽1𝑠𝑖𝑛𝜃𝑖  

𝛽𝑖𝑧 = 𝛽1𝑐𝑜𝑠𝜃𝑖  

𝛽1𝑠𝑖𝑛𝜃𝑟  

𝛽𝑟𝑧 = 𝛽1𝑐𝑜𝑠𝜃𝑟  

𝛽𝑡𝑧 = 𝛽2𝑐𝑜𝑠𝜃𝑡 

𝛽2𝑠𝑖𝑛𝜃𝑡 

• From boundary condition we can write: the tangential component of 𝐸 
must be continuous at 𝑧 = 0. 

tan tan tan( 0) ( 0) ( 0)i r tE z E z E z    

i r t      ix rx tx x      iy ry ty y     
This boundary condition 
can be satisfied if: 

First condition implies that the frequency 
remains unchanged.  
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Reflection at Oblique Incidence (contd.)  

• From second and third 
conditions we can 
write: 

𝛽1𝑠𝑖𝑛𝜃𝑖 = 𝛽1𝑠𝑖𝑛𝜃𝑟 𝛽1𝑠𝑖𝑛𝜃𝑖 = 𝛽2𝑠𝑖𝑛𝜃𝑡 

Where, 𝜃𝑟 is the angle of reflection and 𝜃𝑡 is 
the angle of transmission.  

• We know, for lossless media: 
1 1 1    2 2 2   

𝜃𝑖 = 𝜃𝑟 1 2 1 1

2 1 2 2

sin

sin

t

i

u

u

   

   
  

Snell’s Law 1 2sin sini tn n 

𝑛1 and 𝑛2 are the 
refractive indices of the 

media 
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Example – 1  
A dielectric slab with index of refraction 𝑛2 is surrounded by a medium with 
index of refraction 𝑛1 as shown. If 𝜃𝑖 < 𝜃𝑐 , show that the emerging beam is 
parallel to the incident beam.  

1
2 1

2

sin sin
n

n
 

At the upper surface: 

2
3 2

3

sin sin
n

n
 

Similarly at the lower surface: 

2
3 2

1

sin sin
n

n
 

2 1
3 1 1

1 2

sin sin sin
n n

n n
  

  
    

  

The slab displaces the beam’s position but the beam’s 
direction remains unchanged.  
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Reflection at Oblique Incidence (contd.)  
• For normal incidence, the reflection and transmission coefficients Γ and 𝜏 

at a boundary between two media are independent of the polarization of 

the incident wave, as both the 𝐸 and 𝐻 of a normally incident plane wave 
are tangential to the boundary regardless to the wave polarization.  

• This is not the case for wave travelling at an angle 𝜃𝑖 ≠ 0 with respect to 
the normal to the interface.  

• A wave of arbitrary polarization may be described as the superposition of 

two orthogonally polarized waves, one with its 𝐸 parallel to the plane of 
incidence (parallel polarization or transverse magnetic (TM) polarization) 

and the other with 𝐸  perpendicular to the plane of incidence 
(perpendicular polarization or transverse electric (TE) polarization).  
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Parallel Polarization 

𝐸𝑖 

𝐸𝑟 
𝐸𝑡 

𝐻𝑖 

𝐻𝑟 

𝐻𝑡 

• Consider this figure: 𝐸 field lies in the xz-plane, the plane of incidence. 
• It illustrates the case of “Parallel Polarization”.  

• In medium 1 the incident waves 
are: 

1 ( sin cos )ˆ ˆ( cos sin ) i ij x z
is io x i z iE E a a e

     
 

1 ( sin cos )

1

ˆi i
io j x z

is y

E
H e a
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1 ( sin cos )ˆ ˆ( cos sin ) r rj x z
rs ro x r z rE E a a e       

1 ( sin cos )

1

ˆr r
io j x z

rs y

E
H e a  



  

• In medium 1 the 
reflected waves are: 

Parallel Polarization (contd.) 

• The transmitted fields in medium 2 are given by: 

2 ( sin cos )ˆ ˆ( cos sin ) t tj x z
ts to x t z tE E a a e

     
  2 ( sin cos )

2

ˆt t
to j x z

ts y

E
H e a

  



 


• We know: 𝜃𝑖 = 𝜃𝑟 and tangential components of electric and magnetic 
fields are continuous at the boundary z=0. 

• Therefore: 

 cos cosio ro i to tE E E    
1 2

1 1
io ro toE E E
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Parallel Polarization (contd.) 

• Simplification gives: 2 1
||

2 1

cos cos

cos cos

ro t i

io t i

E

E

   

   


  



2
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2 1

2 cos

cos cos
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io t i

E

E

 


   
 



Fresnel’s Equations for parallel polarization 

• For 𝜃𝑖 = 𝜃𝑡 = 0, we get: 2 1
||

2 1

ro

io

E

E

 

 


    



2
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2 1

2to

io

E

E


 

 
  



• Furthermore, the expressions 
for reflection coefficient and 
transmission coefficient can be 
written in terms of angle of 

incidence. 

2
2 21

2

2

cos 1 sin 1 sint t i
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• In addition: || ||
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Parallel Polarization (contd.) 
• The reflection coefficient Γ|| equals zero when there is no reflection (only 

the parallel component is not reflected), and the incident angle at which 
this happens is called Brewster’s Angle 𝜃𝐵||. 

• The Brewster’s Angle is also known as polarizing angle.  

• At this angle, the perpendicular component of 𝐸 will be reflected.  
• Brewster’s concept is utilized in laser tube used in surgical procedures.  

• For Brewster’s Angle, 
set Γ|| = 0: 2 1 ||cos cost B       2 2 2 2

2 1 ||1 sin 1 sint B     

2 1

2 1 2
|| 2

1

2

1

sin

1

B

 

 









 

  
 

For a lossless and 
nonmagnetic medium: 

2

||
1

2

1
sin

1
B 







2
||

2 1

sin B




 




There is a Brewster Angle 
for any combination of 𝜀1 

and 𝜀2. 
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Perpendicular Polarization 

𝐸𝑟 

𝐻𝑟 

𝐸𝑖 

𝐻𝑖 

𝐸𝑡 

𝐻𝑡 

• The 𝐸 field is perpendicular to the plane of incidence (the xz-plane).  
• In this situation we get “Perpendicular Polarization”. 

• Here, 𝐻 field is parallel to the plane of incidence.   

1 ( sin cos )

1

ˆ ˆ( cos sin ) i i
io j x z

is x i z i

E
H a a e

   


 
  

1 ( sin cos )

2

ˆ ˆ( cos sin ) r r
ro j x z

rs x r z r

E
H a a e    



  

1 ( sin cos ) ˆi ij x z
is io yE E e a

   


1 ( sin cos ) ˆr rj x z
rs io yE E e a   
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Perpendicular Polarization (contd.) 
• The transmitted fields in medium 2 are given by: 

2 ( sin cos )

2

ˆ ˆ( cos sin ) t t
to j x z

ts x t z t

E
H a a e

   


 
  2 ( sin cos ) ˆt tj x z

ts to yE E e a
   



• Again, 𝜃𝑖 = 𝜃𝑟 and tangential components of electric and magnetic fields 
are continuous at the boundary z=0. 

• Therefore: 

 io ro toE E E   
1 2

1 1
cos cosio ro i to tE E E 

 
 

• Simplification 
gives: 

2 1
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Fresnel’s Equations for perpendicular polarization 

• For 𝜃𝑖 = 𝜃𝑡 = 0, we get: 2 1

2 1
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Perpendicular Polarization (contd.) 
• Simplification for Brewster’s Angle in Perpendicular Polarization gives: 

2 1cos cosB t        2 2 2 2

2 11 sin 1 sinB t     

1 2

2 2 1
2

1

2

1

sin

1

B

 

 











 

  
  Brewster’s Angle doesn’t exist 

as sine of an angle is never 
greater than unity 

For nonmagnetic media, 
𝜇1 = 𝜇2 = 𝜇0 and therefore: 2sin B  

• If 𝜇1 ≠ 𝜇2 and 𝜀1 = 𝜀2 then: 

2

1

2

1
sin

1
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2

2 1

sin B




 
 



Theoretically 
possible but rarely 
occurs in practice 
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Reflection at Oblique Incidence (contd.)  
• The Brewster’s Angle is also called Polarizing Angle.  
• This is because if a wave composed of both the perpendicular and parallel 

polarization components is incident on a nonmagnetic surface at the 
Brewster angle 𝜃𝐵||, the parallel polarized component totally transmitted 

into the second medium and only the perpendicularly polarized 
component is reflected by the surface.  

• Natural light, including sunlight and light generated by most manufactured 
sources, is 𝑢𝑛𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑  because it consists of equal parallel and 
perpendicular rays. When they are incident upon a surface at the Brewster 
angle, the reflected wave is strictly perpendicularly polarized. Hence the 
surface acts as a polarizer.  
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Example – 2  
• A wave in air is incident upon a soil surface at 𝜃𝑖 = 50°. If soil has 𝜀𝑟 = 4 

and 𝜇𝑟 = 1, determine the following:  

  || || The Brewster angle 
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Applications of RF/Microwaves  

• The use of RF/microwaves has greatly expanded. 
• Examples include telecommunications, radio astronomy, land surveying, 

radar, meteorology, UHF television, terrestrial microwave links, solid-state 
devices, heating, medicine, and identification systems.  

• Features that make microwaves attractive for communications include 
wide available bandwidths (capacities to carry information) and directive 
properties for short wavelengths.   

• Currently, there are three main techniques to carry energy over long 
distances: (a) microwave links, (b) coaxial cables, and (c) fibre optics. 

• A microwave system normally consists of a transmitter (including a 
microwave oscillator, waveguides, amplifiers, and transmitting antenna) 
and a receiver subsystem (including a receiver antenna, transmission line 
or waveguide, and amplifiers). 

• A microwave network is usually an interconnection of various microwave 
components and devices.  
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Applications of RF/Microwaves (contd.)  

• Common microwave components include: 
• Coaxial cables, which are transmission lines for interconnecting microwave 

components. 
• Waveguide sections, which may be straight, curved, or twisted. 
• Antenna, which transmit or receive EM waves efficiently.  
• Terminators, which are designed to absorb the input power and therefore 

acts as one port network. 
• Attenuators, which are designed to absorb some of the EM power passing 

through the device, thereby decreasing the power level of the microwave 
signal. 

• Directional couplers, with a mechanism to couple between different ports. 
• Isolators, which allow energy flow in only one direction. 
• Circulators, which are designed to establish various entry/exit points 

where power can be either fed or extracted.  
• Filters, which suppress unwanted signals and/or separate signals of 

different frequencies.  
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RF/Microwave Circuit  

• A microwave circuit consists of microwave components such as sources, 
transmission lines, waveguides, attenuators, circulators,  and filters.  

• One way of analyzing, such circuits, are to relate the input and output 
variables of each component.  

• At RF/microwave frequencies, where current and voltage are not well 
defined, it is a common practice to use S-parameters for analysis. 

• S-parameters are defined in terms of wave variables which are more easily 
measurable at high frequencies than voltage and current.   
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RF/Microwave Circuit (contd.)  

• Let us consider following 2-port network: 

• The traveling waves are related to the S-parameters as: 

1 11 1 12 2b S a S a  2 21 1 22 2b S a S a 

where, 𝑎1 and 𝑎2 are incident waves at port 1 and 
2 respectively; while 𝑏1 and 𝑏2 represent the 

reflected waves.  
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RF/Microwave Circuit (contd.)  

• In matrix form: 
1 11 12 1

2 21 22 2

b S S a

b S S a

     
     

     

The off-diagonal terms represent transmission coefficients, while 
the diagonal terms represent reflection coefficients. 

• If the network is reciprocal, it will have the same transmission 
characteristic in either direction. 

12 21S S

• If the network is symmetric, then: 
11 22S S

• For matched two port network: 
11 22 0S S 
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RF/Microwave Circuit (contd.)  

• The input reflection coefficient in terms of the S-parameters and the load 
𝑍𝐿: 

1 12 21
11

1 221

L
i

L

b S S
S

a S


   

 
L o

L

L o

Z Z

Z Z


 



Γ𝐿 
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RF/Microwave Circuit (contd.)  

• Similarly, the output reflection coefficient (with 𝑉𝑔 = 0) can be expressed 

in terms of the generator impedance 𝑍𝑔: 

12 212
22

2 111

g

o

g

S Sb
S

a S


   

 
g in

g

g in

Z Z

Z Z
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Example – 3  

• S-parameters are obtained for a microwave transistor operating at 2.5 
GHz: 𝑆11 = 0.85 < −30°, 𝑆12 = 0.07 < 56°, 𝑆21 = 1.68 < 120°, 𝑆22 =
0.85 < −40°. Determine the input reflection coefficient when 𝑍𝐿 = 𝑍𝑜 =
75Ω. 

0L o
L

L o

Z Z

Z Z


  



12 21
11 11
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Waveguiding Structure 

• A waveguiding structure is one that carries a wave (or power) from one 
point to another.  

• There are three common types: 

• Fiber-optic guides 
• Waveguides 
• Transmission lines 

Note: An alternative to waveguiding structures is wireless 
transmission using antennas.  
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Fiber-Optic Guides 
Properties 

• Can propagate a signal at any frequency (in theory) 
• Can be made very low loss  
• Has minimal signal distortion  
• Very immune to interference  
• Not suitable for high power 
• Has both Ez and Hz components of the fields 
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Waveguides 
Properties 

•  Has a single hollow metal pipe 
•  Can propagate a signal only at high frequency:   > c 

• The width must be at least one-half of a wavelength 
•  Has signal distortion, even in the lossless case 
•  Immune to interference 
•  Can handle large amounts of power 
•  Has low loss (compared with a transmission line) 
•  Has either Ez or Hz component of the fields (TMz or TEz)   
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Transmission Line 

Properties 

Coaxial cable (coax) 

Twin lead 
 (shown connected to a impedance-

transforming balun) 

•  Has two conductors running in parallel 
•  Can propagate a signal at any frequency (in theory) 
•  Becomes lossy at high frequency  
•  Can handle low or moderate amounts of power  
•  Does not have signal distortion, unless there is loss 
•  May or may not be immune to interference 
•  Does not have Ez or Hz components of the fields (TEMz)  
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CAT 5 cable 
(twisted pair) 

Transmission Line (contd.) 

The two wires of the transmission line are twisted to reduce 
interference and radiation from discontinuities.  
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Transmission Line (contd.) 

Microstrip 

h 

w 

r 

r 

w 

Stripline 

h 

Transmission lines commonly used on printed-circuit boards 

Coplanar strips 

h r 

w w 

Coplanar waveguide (CPW) 

h r 

w 
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A microwave integrated circuit 

Microstrip line 

Transmission Line (contd.) 

Transmission lines commonly used on printed-circuit boards 
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Transmission Line Theory 

•   Lumped circuits:  resistors, capacitors, inductors   

neglect time delays (phase) 

account for propagation and time 
delays (phase change) 

•  Distributed circuit elements:  transmission lines 

We need transmission-line theory  whenever the length of a 
line is significant compared with a wavelength. 
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Transmission Line Theory (contd.) 

2 conductors 

4 per-unit-length parameters: 

C = capacitance/length [F/m] 

L = inductance/length [H/m] 

R = resistance/length [/m] 

G = conductance/length  [S/m] 

Dz 
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Transmission Line Theory (contd.) 

zD

 ,i z t

+ + + + + + + 
- - - - - - - - - -  ,v z tx x x B 

RDz LDz 

GDz CDz 
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v(z+Dz,t) 

+ 

- 

v(z,t) 

+ 

- 

i(z,t) i(z+Dz,t) 
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Using Transmission Lines to Synthesize Impedances 

• This is very useful is RF/microwave engineering. 

A microwave filter constructed from microstrip. 
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Using Transmission Lines to Synthesize Impedances (contd.) 

• A lossless transmission line terminated in load impedance 𝑍𝐿 

I(-l )

V(-l )
+

l

ZL

-
0 ,Z 

 Z 

0

0

0L
L

L

Z Z

Z Z


  


No reflection from the load 

Matched load: (ZL=Z0)  A 
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  0Z Z  
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0

0

0

0
1

0

tan

L
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Z
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Always imaginary! 
Note: 2 




  scZ jX  

0 1/4 1/2 3/4
g/ 

XSC

inductive

capacitive

Short circuit load: (ZL = 0) B 

l

0 ,Z 

S.C. can become an O.C. 
with a  /4 trans. line  

 0 tanscX Z 

Using Transmission Lines to Synthesize Impedances (contd.) 


