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• Electromagnetic Wave Propagation  
• Complex Permittivity, Loss Tangent, Intrinsic 

Impedance, Skin Depth, Skin Effect etc.  
• Electromagnetic Shielding  
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Introduction 

• Let us consider the Maxwell’s equations in free space (i.e., 𝜌𝑣 = 𝐽 = 0). 
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• First equation states that:  If 𝐸 is changing with time at some point, then 

𝐻 has curl at that point; therefore 𝐻 varies spatially in a direction normal 
to its orientation direction.  

• Also, if 𝐸 is changing with time, then 𝐻 will in general also change with 
time, although not necessarily in the same way.  

• Next we see from second equation:  a time varying 𝐻 generates 𝐸, which 
having curl, varies spatially in the direction normal to its orientation.  

• We now once more have a changing 𝐸, our original hypothesis, but this 
field is present at a small distance away from the point of original 
disturbance.  

Clearly demonstrates the propagation of Electric and 
Magnetic field and in turn transfer of energy.  
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Introduction (contd.) 

• The velocity with which this effect moves away from the original point is 
the velocity of light.  

• We postulate the existence of 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒, in which both fields 

𝐸  and 𝐻, lie in the transverse plane → that is, the plane whose normal is 
the direction of propagation.  

A 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 is characterized by electric and 
magnetic fields that have uniform properties at all points 

across an infinite plane. 

A 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 has no electric or magnetic field 
components along its direction of propagation 
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Introduction (contd.) 

For example, a wave produced by a localized 
source, such as an antenna, expands outwardly 

in the form of spherical wave.  

However, it looks a part of a 
uniform plane wave, with an 

identical properties at all 
points in the plane tangent to 
the wavefront, to an observer 

very far.  
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Introduction (contd.) 

• When a wave propagates through a homogeneous medium without 
interacting with obstacles or material interfaces, it is called unbounded 
and when a wave propagates along a material structure, it is called 
guided.  

• Earth’s surface and ionosphere constitute parallel boundaries of a natural 
structure capable of guiding short-wave radio transmission in the HF band 
(3 to 30MHz).  

Indeed, the 
ionosphere is 

a good 
reflector at HF 

band.  
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Introduction (contd.) 
• Similarly, a transmission line 

such as coaxial can guide a 
wave. For example, when an ac 
source excites an incident 
wave that travels down the 
coaxial line toward the load.    

𝑬 𝑬 

𝑯 𝑯 𝑯 𝑯 

• Unless the load is matched to the line, part (or all) of the incident wave is 
reflected back toward the source.  

• At any point on the line, the instantaneous total voltage 𝑣(𝑧, 𝑡) is the sum of the 
reflected and incident waves, both of which vary sinusoidally with time.  

• Associated with the voltage difference between the inner and outer conductors 

is a radial electric field 𝐸(𝑧, 𝑡) that exists in the dielectric material. 𝐸(𝑧, 𝑡)  is also 
sinusoidal as 𝑣(𝑧, 𝑡)  varies sinusoidally.  

• Furthermore, the current flowing through the inner conductor induces an 

azimuthal magnetic field 𝐻 𝑧, 𝑡 .  

• The coupled 𝐸(𝑧, 𝑡) & 𝐻 𝑧, 𝑡  constitute an EM field and models the wave 
propagation on a transmission line.  

• So, propagation can be talked in terms of 𝑣(𝑧, 𝑡) & i(𝑧, 𝑡) or 𝐸(𝑧, 𝑡) & 𝐻 𝑧, 𝑡 .  



Indraprastha Institute of 

Information Technology Delhi ECE230 

Wave Propagation in Lossy Dielectrics  

• Let us develop formulations for wave propagation in lossy dielectrics – it 
provides the general case of wave propagation. 

• A lossy dielectric is a medium in which an EM wave, as it propagates, 
loses power owing to imperfect dielectric.  

• In other words, a lossy dielectric is partially conducting medium 
(imperfect dielectric or imperfect conductor) with 𝜎 ≠ 0, as distinct from 
perfect dielectric in which 𝜎 = 0. 

The time factor 𝑒𝑗𝜔𝑡 has been suppressed in above expressions.  

 s sH j E    s sE j H   . 0sE  . 0sH 

• The Maxwell’s equations in a linear, isotropic, homogeneous, lossy 
dielectric  medium that is charge free is given by:  
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Wave Propagation in Lossy Dielectrics (contd.)  

s sE j H  

Take curl on 
both sides  

 s sE j H   

   2. s s sE E j j E       

=0 

2 2 0s sE E    2 j j    Where, 

𝛾 is called the propagation constant 

• We can similarly find expression for magnetic field: 2 2 0s sH H  

• These expressions are called vector Helmholtz’s equations.  
• In cartesian coordinates, for example, each of these two vector 

equations are equivalent to three scalar wave equations → one for each 

components of 𝐸𝑠 or 𝐻𝑠 along 𝑎 𝑥 , 𝑎 𝑦, and 𝑎 𝑧. 

 2 0s sE j j E     
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Wave Propagation in Lossy Dielectrics (contd.)  
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The component fields of any time-harmonic EM wave must 
individually satisfy these six partial differential equations. In many 

cases, the EM wave will not contain all six components. An example of 
this is the 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒. 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Wave Propagation in Lossy Dielectrics (contd.)  
• If we assume that the wave propagates along +𝑎 𝑧 and 

that 𝐸𝑠 has only an x-component, then:  
ˆ( )s xs xE E z a

• Substitution of this into Helmholtz equation results in:  2 2 ( ) 0xsE z  

• Therefore: 
2 2 2
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( ) ( ) ( )
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• Hence: 
2

2

2
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d
E z
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

 
  

 

=0 

Scalar wave equation  

It is a linear homogeneous differential 
equation whose solution is:  0 0( ) z z

xsE z E e E e    

• Where, the first component is the wave propagating in +𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 and 
the second term is the wave propagating in −z 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

• We assumed, wave only propagating in +𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. Therefore, 𝐸0
− = 0. 
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Wave Propagation in Lossy Dielectrics (contd.)  

• Simplification gives: 2 2 2 2Re        2 2 2    

• Furthermore: 2 2 2 2 2 2         

• From the above 
two expressions we 
can obtain: 

2

1 1
2

 
 



 
 

    
  
 

2

1 1
2

 
 



 
 

    
  
 

j     2 2 2 2 j j j          

• Since 𝛾 is a complex 
quantity, we can 
express it as: 

   ( )

0
ˆ ˆ( , ) Re ( ) Rej t z j t z

xs x xE z t E z e a E e e a      
• Inserting the time factor in the 

solution yields: 

• Therefore the simplified solution of wave 
equation is:  

( )

0 0( ) z j z

xsE z E e E e       
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Wave Propagation in Lossy Dielectrics (contd.)  

An electric field with an x-
component traveling in +z 

direction at 𝑡 = 0 and 
𝑡 = ∆𝑡; arrows indicate 
instantaneous values of 

Electric Field. 

• It is apparent that as the wave propagates along +𝑎 𝑧, it decreases or attenuates 
in amplitude by a factor 𝑒−𝛼𝑧, and therefore 𝛼 is known as the attenuation 
constant or attenuation coefficient of the medium → It is a measure of the 
spatial rate of decay of the wave in the medium, measured in nepers per meter 
→ For free space, 𝜎 = 0 and therefore 𝛼 = 0 → the wave doesn’t attenuate in 
free space.   

• The quantity 𝛽 is a measure of phase shift per unit length in radians per meter 
and is called the phase constant or wave number.  

   ( )

0
ˆ ˆ( , ) Re ( ) Rej t z j t z

xs x xE z t E z e a E e e a      
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Wave Propagation in Lossy Dielectrics (contd.)  

• The solution for magnetic field is:  ( )

0
ˆ( , ) Re z j t z

yH z t H e e a    

• Where: 
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𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 of the medium. 
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• Therefore the magnetic field expression is: 
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It is evident that 𝑬 and 𝑯 are out of phase by 𝜽𝜼. 
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Wave Propagation in Lossy Dielectrics (contd.)  

• In terms of 𝛽 , the wave velocity 𝑢  and 
wavelength λ are:  

u





2





𝑡𝑎𝑛𝜃 is known as the 
𝑙𝑜𝑠𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 and 𝜃 is the 
𝑙𝑜𝑠𝑠 𝑎𝑛𝑔𝑙𝑒 of the medium.   

• Furthermore, the ratio of the magnitude of conduction current density 𝐽 𝑐 

to that of the displacement current density 𝐽 𝑑 is: 

tan
scs

sds

J E

J j E

 



  

A medium is good 
(lossless or perfect) 

dielectric  if 𝑡𝑎𝑛𝜃 is very 
small (𝜎 ≪ 𝜔𝜖) or a 

good conductor if 𝑡𝑎𝑛𝜃 is 
large (𝜎 ≫ 𝜔𝜖)  
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Wave Propagation in Lossy Dielectrics (contd.)  
• In general, for propagation of wave, characteristics of any medium  

doesn’t only depend on the parameters 𝜎, 𝜖, 𝑎𝑛𝑑 𝜇 but also on frequency 
of operation.  

• A medium that is regarded as good conductor at low frequency may be a 
good dielectric at high frequencies.  

• We have: 

tan 2 







• From definition of 
intrinsic impedance: tan







• From definition 
of loss tangent: 

• Therefore: 2  
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Wave Propagation in Lossy Dielectrics (contd.)  

1c
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 
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 
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• The loss tangent is:  

"
tan

'

 


 
 

𝜀𝑐 is called the complex permittivity of 
the medium.  



Indraprastha Institute of 

Information Technology Delhi ECE230 

Example – 1  

• If the magnetic field phasor of a plane wave traveling in a medium with 

intrinsic impedance η = 100Ω is given by 𝐻𝑠 = 10𝑎 𝑦 + 20𝑎 𝑧 𝑒−𝑗4𝑥 𝑚𝐴

𝑚
.  

Find the associated electric field phasor.  

• It is clear that the wave travels in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

• Therefore:   

𝐸𝑠 = −η(𝑎 𝑥 × 𝐻𝑠) 

𝐸𝑠 = −100 𝑎 𝑥 × (10𝑎 𝑦 + 20𝑎 𝑧) 𝑒−𝑗4𝑥 × 10−3 

∴ 𝐸𝑠= −𝑎 𝑧 + 2𝑎 𝑦 𝑒−𝑗4𝑥
𝑉

𝑚
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Example – 2  

• In the previous example, determine the electric field if the magnetic field 

is given by 𝐻𝑠 = 𝑎 𝑦 10𝑒−𝑗3𝑥 − 20𝑒𝑗3𝑥 𝑚𝐴

𝑚
.   

• This magnetic field is composed of two components, one with amplitude 
of 10 𝑚𝐴/𝑚 belonging to a wave traveling along +𝑎 𝑥 and another with 
amplitude of 20 𝑚𝐴/𝑚 belonging to a separate wave traveling in the 
opposite direction −𝑎 𝑥. Hence, we need to treat these two components 
separately. 

𝐻𝑠 = 𝐻1𝑠 + 𝐻2𝑠 = 𝑎 𝑦10𝑒
−𝑗3𝑥

𝑚𝐴

𝑚
−𝑎 𝑦 20𝑒𝑗3𝑥

𝑚𝐴

𝑚
 

𝐸𝑠 = −η(𝑎 𝑥 × 𝐻𝑠) • Then use:  

∴ 𝐸𝑠 = 𝑎 𝑧 𝑒−𝑗3𝑥 + 2𝑒𝑗3𝑥
𝑉

𝑚
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Plane Waves in Lossless Dielectrics 

• In a lossless dielectrics, 𝜎 ≪ 𝜔𝜀.  
• In such a scenario:  𝜎 ≈ 0, 𝜀 = 𝜀0𝜀𝑟,   𝜇 = 𝜇0𝜇𝑟. 
• Therefore: 

0





  0    
1

u



2


 



Thus 𝐸 and 𝐻 are in time phase with 
each other. 
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Plane Waves in Free Space 
• In this case:  𝜎 = 0, 𝜀 = 𝜀0,   𝜇 = 𝜇0. 

• The fact that EM waves travel in free space with the speed of light is 
significant.  

• It provides evidence that light is the manifestation of an EM wave. 

• Furthermore:  

0
ˆcos( ) xE E t z a  

0

0

ˆcos( ) y

E
H t z a 


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 

0

0

0





  0  0 0
c


    

0 0

1
u c

 
 

2

c





• Therefore: 

0
0

0

120 377


  


   

• We have: • The plots of 𝐸 and 𝐻 are shown below. 

𝐸 = 𝐸0
+cos (−𝛽𝑧)𝑎 𝑥 

𝐻 = 𝐻0
+cos (−𝛽𝑧)𝑎 𝑦 
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Plane Waves in Free Space (contd.) 
• In general, if 𝑎 𝐸 , 𝑎 𝐻 and 𝑎 𝑘 are unit 

vectors along 𝐸 , 𝐻  and the 
direction of propagation, then:  

ˆ ˆ ˆ
k E Ha a a  ˆ ˆ ˆ

k H Ea a a   ˆ ˆ ˆ
E H ka a a 

• Both 𝐸 and 𝐻 fields are everywhere normal to the direction of wave 
propagation. 

• It means that the fields lie in a plane that is transverse or orthogonal to 
the direction of propagation. 

• They form an EM wave that has no electric or magnetic field components 
along the direction of propagation → such a wave is called transverse 
electromagnetic (TEM) wave.  

• A combination of 𝐸 and 𝐻 is called a uniform plane wave because fields 
have same magnitude throughout any transverse plane. 

• The direction in which the electric field points is the polarization of a TEM 
wave → Essentially, polarization of a uniform plane wave describes the 

locus traced by the tip of the 𝐸 vector (in the plane orthogonal to the 
direction of propagation) at a given point in space as a function of time.  
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It illustrates a uniform plane wave 

Plane Waves in Free Space (contd.) 

0
ˆ( , ) cos( )z

xE z t E e t z a     It is polarized in x-direction 

• In practice, a uniform plane wave can’t exist because it stretches to infinity 
and would represent an infinite energy → however these waves are 
characteristically simple and fundamentally important.  

• These serve as approximations for practical waves such as those from 
radio antenna at distances sufficiently far from radiating sources.  

• The on-going discussion are applicable for any other isotropic medium.  

𝐸 = 𝐸0
+cos (𝜔𝑡)𝑎 𝑥 

𝐻 = 𝐻0
+cos (𝜔𝑡)𝑎 𝑦 
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Plane Waves in Good Conductors   
• In a good conductor, displacement current is negligible in comparison to 

conduction current (𝐽𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ≫ 𝐽𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) ↔ Because, for a 

perfect or good conductor, 𝜎 ≫ 𝜔𝜀.  
• Although this inequality is frequency dependent, most good conductors 

(such as copper and aluminum) have conductivities on the order of 
107 𝑚ℎ𝑜/𝑚 and negligible polarization such that we never encounter the 
frequencies at which the displacement current becomes comparable to 
the conduction current.  

 𝜎 = ∞, 𝜀 = 𝜀0,   𝜇 = 𝜇0𝜇𝑟. • For a good conductor: 

• Therefore: 
2


   f    

2
u

 

 
 

2




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Plane Waves in Good Conductors  (contd.)  

• Furthermore: 45
j 


 

    Thus 𝐸 leads 𝐻 by 45° 

0
ˆcos( )z

xE E e t z a    • If: 
0 ˆcos( 45 )z

y

E
H e t z a  





   • Then: 

𝐸(𝑥)

𝐸0
+  

• The amplitude of 𝐸  or 𝐻  is 
attenuated by the factor 𝑒−𝛼𝑧 as 
it travels along the medium. 

• The rate of attenuation in a good 
conductor is characterized by 
distance called 𝑠𝑘𝑖𝑛 𝑑𝑒𝑝𝑡ℎ 𝛿  
↔ a distance over which plane 
wave is attenuated by a factor 
𝑒−1  (about 37% of the original 
value) in a good conductor. 
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Plane Waves in Good Conductors (contd.)  

1

0 0E e E e   
1




 

• 𝑠𝑘𝑖𝑛 𝑑𝑒𝑝𝑡ℎ is a measure of the 
depth to which an EM wave 
can penetrate the medium.  

Valid for any 
material 
medium  

1 1

f


  
 

For a partially conducting medium, the skin depth can be 
considerably large. 

• For  a good conductor: /41 1
2 j j
e 

 


 

• For good conductors,  𝛼 = 𝛽 =
1

𝛿
, therefore: /

0
ˆcos( )z

x

z
E E e t a 



  
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Plane Waves in Good Conductors (contd.)  

/

0
ˆcos( )z

x

z
E E e t a 



  

It shows that 𝑠𝑘𝑖𝑛 𝑑𝑒𝑝𝑡ℎ (𝛿) is the measure of exponential 
damping the wave experiences as it travels through the 

conductor.  

𝐸0
+ 

0.368𝐸0
+ 

66.1 / (mm)f  For Copper ! 

It demonstrates that the fields 
dampen and will hardly propagate 

through good conductors 
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Example – 3  

• Uniform plane wave (𝑓 = 1𝑀𝐻𝑧) at an air/copper interface. 

 𝛼1 = 0,    𝛽1 =
𝜔

𝑐 
  𝛼2 = 𝛽2 =

1

𝛿
 

Determine 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑢1, 𝑢2, λ1, 𝑎𝑛𝑑 λ2.  
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6

1 8

2 10
0.0209 /

3 10
rad m

c

 



  



8

1 6

3 10
300

10

c
m

f



  

• In the air,  83 10 /c m s 

• In the copper,  

  7 7
0

1 1 0.066

4 10 5.8 10f ff


     
  

 

at 1 MHZ: 0.066mm 

3

2 2

1
15.2 10 /Np m 


    2

2

2
2 0.415mm


 


  

2 2 415 /u f m s 

Example – 3 (contd.)  
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Plane Waves in Good Conductors (contd.)  

Electromagnetic Shielding  

The previous example shows that we may enclose a volume with a thin layer 
of good conductor to act as an electromagnetic shield. Depending on the 
application, the electromagnetic shield may be necessary to prevent waves 
radiating out of the shielded volume or to prevent waves from penetrating 
into the shielded volume.  
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Plane Waves in Good Conductors (contd.)  

• Given a plane wave incident on a highly-conducting surface, the electric 
field (and thus the current density) is found to be concentrated at the 
surface of the conductor.  

• The same phenomenon occurs for a current carrying conductor such as a 
wire.  

• The effect is frequency dependent, just as it is in the incident plane wave 
example.  

• This phenomenon is known as the 𝑠𝑘𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡. 
• Therefore, one can say, The process whereby the field intensity in a 

conductor rapidly decreases is called 𝑠𝑘𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡.  
• 𝑠𝑘𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡  is the tendency of the charges to migrate from the bulk of 

the conducting material to the surface, resulting in higher resistances (for 
ac!)  

• The fields and associated currents are confined to a very thin layer 
(𝑡ℎ𝑒 𝑠𝑘𝑖𝑛) of the conductor surface.  
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Plane Waves in Good Conductors (contd.)  

• For a wire of radius 𝑎, it is a 
good approximation  at high 
frequencies to assume that all 
of the current flows in the 
circular  ring of thickness 𝛿.  

• 𝑠𝑘𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 is used to advantage in many applications. 
• For example, because the 𝑠𝑘𝑖𝑛 𝑑𝑒𝑝𝑡ℎ in silver is very small, the difference 

in performance between a pure silver and silver-plated brass component is 
negligible, so silver plating is often used to reduce the material cost of 
waveguide components.  

• Furthermore, hollow tubular conductors are used instead of solid 
conductors in outdoor television antennas.  
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Plane Waves in Good Conductors (contd.)  
• The 𝑠𝑘𝑖𝑛 𝑑𝑒𝑝𝑡ℎ is useful in calculating the ac resistance.  

• The resistance 𝑅 =
𝑙

𝜎𝑆
 is called the dc resistance 𝑅𝑑𝑐 . 

• The 𝑠𝑘𝑖𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑠 is the real part of η. 

1
s

f
R

 

 
 

Resistance of a unit width and unit 
length of the conductor having cross-

sectional area 1 × 𝛿. 

• Therefore,  for a given width 𝑤 and length 𝑙, the ac 
resistance is: 

s
ac

l R l
R

w w
 

• For a conductor 
wire of radius 𝑎:  

 

 2

2

2

ac

dc

ll
aR aw

l lR

S a

  


  

  

Since, 𝛿 ≪ 𝑎 at high 
frequencies, 𝑅𝑎𝑐 is far greater 
than 𝑅𝑑𝑐 . In general, the ratio 

of the ac and dc resistance 
starts at 1.0 for dc and very 

low frequencies and increases 
as the frequency increases.  
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General Relations Between 𝑬 and 𝑯 
• We learn earlier that if 𝑎 𝐸 , 𝑎 𝐻 and 

𝑎 𝑘 are unit vectors along 𝐸, 𝐻 and 
the direction of propagation, then:  

ˆ ˆ ˆ
k E Ha a a  ˆ ˆ ˆ

k H Ea a a   ˆ ˆ ˆ
E H ka a a 

• In general it can be deduced that: 
1
ˆ

s k sH a E


  ˆ
s k sE a H  

• Furthermore, a uniform plane wave travelling in the +𝑎 𝑧 direction may 
have both 𝑥 − and 𝑦 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠. 

• In such a scenario:  ˆ ˆ( ) ( )s x sx y syE a E z a E z  

• The associated magnetic field will be:  ˆ ˆ( ) ( )s x sx y syH a H z a H z  

• The exact expression of magnetic 
field in terms of electric field will be:  

( )1 ( )
ˆ ˆ ˆsy sx

s z s x y

E z E z
H a E a a

  

 

    

• Thus:  
( )sy

xs

E z
H





  
( )

( ) sx
ys

E z
H z




 
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General Relations Between 𝑬 and 𝑯 (contd.) 

𝐻𝑠𝑥
+  

𝐻𝑠𝑦
+  

𝐸𝑠𝑦
+  

𝐸𝑠𝑥
+  

𝐸 

𝐻 

In general, a TEM wave may have an electric field in any direction in the 
plane orthogonal to the direction of wave travel, and the associated 

magnetic field is also in the same plane with appropriate magnitude and 
direction.  


