

<u>Lecture – 19</u>

Date: 26.03.2015

- Electromagnetic Fields (Contd.)
- Displacement Current
- Maxwell's Equations
- Time Varying Potentials

Moving Conductor in a Time-Varying \vec{B}

 For a general case of a single turn conducting loop moving in time-varying magnetic field, the induced *emf* is the sum of a *transformer emf* and *motional emf*.

$$V_{emf} = V_{emf}^{tr} + V_{emf}^{m}$$

$$V_{emf} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot ds + \oint_{C} \left(\vec{u} \times \vec{B} \right) \cdot dl$$

• induced *emf* also equals:

$$V_{emf} = -\frac{d\Psi}{dt} = -\frac{d}{dt} \int_{S} \vec{B} \cdot \vec{ds}$$

Both expressions are equivalent and choice between these two depends on the type of problem.

ECE230

Example – 1

• Find the induced voltage when the rotating loop of the electromagnetic generator, shown in figure, is in a magnetic field $\vec{B} = \hat{a}_z B_0 cos \omega t$. Assume that $\alpha = 0$ at t = 0.

Displacement Current

- You can recall that the Ampere's law in differential form is given by:
- Integration of the above expression gives: $\iint_{s} (\nabla \times \vec{H}) \cdot \vec{ds} = \int_{s} \vec{J} \cdot \vec{ds} + \int_{s} \frac{\partial \vec{D}}{\partial t} \cdot \vec{ds}$ • Simplification gives: $\oint_{c} \vec{H} \cdot \vec{dl} = I_{c} + \int_{s} \frac{\partial \vec{D}}{\partial t} \cdot \vec{ds}$ Conduction Current
- The second term has the unit of current because its proportional to the time derivative of the electric flux density \vec{D} called the electric displacement.
- This term is therefore called the *Displacement Current*, I_d .

$$I_{d} = \int_{S} \vec{J}_{d} \cdot \vec{ds} = \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot \vec{ds}$$
$$\vec{J}_{d} = \frac{\partial \vec{D}}{\partial t} \text{ is called}$$
displacement current
density
herefore:
$$\oint_{C} \vec{H} \cdot \vec{dl} = I_{c} + I_{d} = I$$

• In electrostatics,
$$\frac{\partial \vec{D}}{\partial t} = 0$$
 and therefore $I_d = 0$ and $I = I_c$.

 The concept of displacement current was introduced by James Clerk Maxwell when he formulated the unified theory of electricity and magnetism under time-varying conditions.

• Let us consider the following parallel-plate capacitor to understand the physical meaning of *displacement current*.

- Let us find I_c and I_d through each of the two imaginary surfaces: (1) cross section of the conducting wire, S_1 ; (2) cross section of the capacitor, S_2 .
- The simple circuit consists of a capacitor and an ac source given by:

$$V_s(t) = V_0 \cos \omega t$$

 We know from Maxwell's hypothesis that the total current flowing through any surface consists, in general, of a conduction current and a displacement current.

- In the perfect conducting wire, $\vec{E} = \vec{D} = 0$; hence, $I_{1d} = 0$.
- As for I_{1c} , we know:

$$I_{1c} = C \frac{dV_c}{dt} = C \frac{d}{dt} (V_0 \cos \omega t) = -C V_0 \omega \sin \omega t$$

• With no displacement current in the wire, the total current in the wire is:

$$I_1 = I_{1c} = -CV_0\omega\sin\omega t$$

- Now in the perfect dielectric with permittivity ε between the capacitor plates, $\sigma = 0$.
- Therefore, $I_{2c} = 0$ because no conduction current exists there.
- To determine I_{2d} , we need to determine \vec{E} in the dielectric spacing:

$$\vec{E} = \hat{a}_y \frac{V_c}{d} = \hat{a}_y \frac{V_0}{d} \cos \omega t$$

d is the spacing between the plates, and \hat{a}_y is the direction from the higher potential plate to the lower potential plate at t = 0.

• Therefore displacement current in the dielectric is:

- It is apparent that the expression for displacement current in the dielectric is identical to the conduction current in the wire.
- The fact that these two are equal ensures the continuity of the total current flowing through the circuit.
- Even though the displacement current doesn't transport free charges, it nonetheless behaves like a real current.
- Caution, in this example we considered the wire as perfect conductor whereas the dielectric as perfect as well.
- In practice, none of them are perfect and therefore the total current at all the time is sum of conductions and displacement currents.

ECE230

Example – 2

• The conduction current flowing through a wire with conductivity $\sigma = 2 \times 10^7$ S/m and relative permittivity $\epsilon_r = 1$ is given by $I_c = 2sin\omega t \ (mA)$. If $\omega = 10^9 \frac{rad}{s}$, find the displacement current.

Solution

The conduction current is:

$$I_c = JA = \sigma EA$$

where A is the cross section of the wire.

Therefore:

$$E = \frac{I_c}{\sigma A} = \frac{2 \times 10^{-3} \sin \omega t}{2 \times 10^7 \times A} = \frac{1 \times 10^{-10}}{A} \sin \omega t$$

Indraprastha Institute of Information Technology Delhi

Example – 2 (contd.)

We know:

$$I_{d} = J_{d}A$$

$$I_{d} = A\frac{\partial D}{\partial t}$$

$$I_{d} = \varepsilon A\frac{\partial E}{\partial t}$$

$$I_d = \varepsilon A \frac{\partial}{\partial t} \left(\frac{1 \times 10^{-10}}{A} \sin \omega t \right)$$

$$I_d = \varepsilon \omega \times 10^{-10} \cos \omega t$$

:
$$I_d = 0.885 \times 10^{-12} \cos \omega t$$
 (A)

ECE230

Example – 3

• (a) Show that the ratio of the amplitudes of the conduction current density and displacement current density is $\frac{\sigma}{\omega\epsilon}$ for the applied field $E = E_m cos\omega t$, assume $\mu = \mu_0$. (b) What is this amplitude ratio if the applied field is $E = E_m e^{-t/\tau}$.

Solution

(a)
$$J_c = \sigma E = \sigma E_m \cos \omega t$$
$$J_d = \frac{\partial D}{\partial t} = \varepsilon \frac{\partial E}{\partial t} = -\varepsilon \omega E_m \sin \omega t$$

Therefore the ratio is:

$$\left|\frac{J_{c}}{J_{d}}\right| = \left|\frac{\sigma}{\varepsilon\omega}\right| = \frac{\sigma}{\varepsilon\omega}$$

(b)
$$\left| \frac{J_c}{J_d} \right| = \frac{\sigma \tau}{\varepsilon}$$

Maxwell's Equations

• Generalized forms of Maxwell's equations:

Differential Form	Integral Form	Remarks
$\nabla . \vec{D} = \rho_v$	$\oint_{S} \vec{D} \cdot \vec{ds} = \int_{v} \rho_{v} dv$	Gauss's Law
$\nabla . \vec{B} = 0$	$\oint_{S} \vec{B} \cdot \vec{ds} = 0$	Nonexistence of isolated magnetic charge
$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\oint_{L} \vec{E}.\vec{dl} = -\frac{\partial}{\partial t} \int_{S} \vec{B}.\vec{ds}$	Faraday's Law
$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	$\oint_{L} \vec{H} \cdot \vec{dl} = \int_{S} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot \vec{ds}$	Ampere's Circuital Law

Maxwell's Equations (contd.)

- equations that go hand-in-hand Other with Maxwell's equations is the Lorentz force equation:
- Continuity equation is another that is closely associated with Maxwell's equations:
- The concept of linearity, isotropy, and homogeneity of a material applies to time-varying fields as well.
- In a linear, homogeneous, and isotropic medium:

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_0 \vec{E} + \vec{P} \qquad \vec{B} = \mu \vec{H} = \mu_0 \left(\vec{H} + \vec{M} \right) \qquad \vec{J} = \sigma \vec{E} + \rho_v \vec{u}$$

The boundary conditions remain valid for time-varying fields as well.

$$\vec{E}_{1t} - \vec{E}_{2t} = 0 \qquad (\vec{E}_1 - \vec{E}_2) \times \hat{a}_n = 0 \qquad \vec{H}_{1t} - \vec{H}_{2t} = K \qquad (\vec{H}_1 - \vec{H}_2) \times \hat{a}_n = \vec{K}$$
$$\vec{D}_{1n} - \vec{D}_{2n} = \rho_s \qquad (\vec{D}_1 - \vec{D}_2) \cdot \hat{a}_n = \rho_s \qquad \vec{B}_{1n} - \vec{B}_{2n} = 0 \qquad (\vec{B}_1 - \vec{B}_2) \cdot \hat{a}_n = 0$$

However, for a perfect conductor in a time-varying field:

$$\vec{E} = 0, \qquad \vec{H} = 0, \qquad \vec{J} = 0$$
 $\vec{B}_n = 0$ $\vec{E}_t = 0$

FCF230

$$\nabla . \vec{J} = -\frac{\partial \rho_v}{\partial t}$$

$$\nabla . \vec{J} = -\frac{\partial \rho_v}{\partial v}$$

 $\vec{F} = Q\left(\vec{E} + \vec{u} \times \vec{B}\right)$

Example – 4

• Electric field intensity throughout an enclosed region of free space is $E_y = A(sin20x)(sinbz)\{sin(12 \times 10^9 t)\}\frac{V}{m}$. Beginning with the $\nabla \times \vec{E}$ relationship, use Maxwell's equation to find a numerical value for b, assuming b > 0.

Time-Varying Potentials

- For the static EM fields, the electric scalar potential was expressed as:
- Whereas, the magnetic vector potential was expressed as:
- Let us examine, what happens to these potentials when the field vary with time.
- Recall that, \vec{A} was defined from the fact that $\nabla \cdot \vec{B} = 0$, which still holds for time-varying case. Therefore:
- We know from Faraday's Law:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

e:
$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} (\nabla \times \vec{A})$$
 $\nabla \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$

$$\vec{B} = \nabla \times \vec{A}$$

$$V = \int_{v} \frac{\rho_{v} dv}{4\pi\varepsilon R}$$
$$\vec{A} = \int_{v} \frac{\mu \vec{J} dv}{4\pi R}$$

Indraprastha Institute of Information Technology Delhi

Time-Varying Potentials (contd.)

• We know, that the curl of the gradient of a scalar field is zero: $\nabla \times -\nabla V = 0$, therefore:

Thus we can determine \vec{E} and \vec{B} provided V and \vec{A} are known.

- However, determination of V and \vec{A} require expressions that are suitable for time varying fields.
- We know that $\nabla \cdot \vec{D} = \rho_v$ is valid for time-varying conditions. We can write:

Indraprastha Institute of Information Technology Delhi

Time-Varying Potentials (contd.)

• Furthermore:
$$\nabla \times \nabla \times \vec{A} = \nabla \times \vec{B} = \mu \vec{J} + \mu \varepsilon \frac{\partial}{\partial t} \left(-\nabla V - \frac{\partial \vec{A}}{\partial t} \right) \quad (\nabla \times \vec{H} = \vec{J} + \varepsilon \frac{\partial E}{\partial t})$$
$$\nabla \times \vec{H} = \vec{J} + \varepsilon \frac{\partial E}{\partial t}$$
$$\nabla \times \nabla \times \vec{A} = \mu \vec{J} - \mu \varepsilon \nabla \left(\frac{\partial V}{\partial t} \right) - \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2}$$
$$\nabla^2 \vec{A} - \nabla \left(\nabla \cdot \vec{A} \right) = -\mu \vec{J} + \mu \varepsilon \nabla \left(\frac{\partial V}{\partial t} \right) + \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2}$$

• We know that a vector field is uniquely defined when its curl and divergence are specified. The curl of \vec{A} has been $\nabla \cdot \vec{A} = -\mu \varepsilon$ specified as \vec{B} , therefore the divergence for \vec{A} can be expressed as:

This expression relates V and \vec{A} and is called *Loretnz condition for potentials*.

Indraprastha Institute of Information Technology Delhi

Time-Varying Potentials (contd.)

- Lorentz condition uncouples and also creates symmetry between V and Â and therefore aid the analysis of wave equations.
- Actually, V and \vec{A} satisfy *Poisson's equations* for time-varying potentials.
- From these expressions, it can be deduced that the solutions for V and \vec{A} are:

$$V = \int_{v} \frac{\left[\rho_{v}\right] dv}{4\pi\varepsilon R}$$

Where $[\rho_v]$ and $[\vec{J}]$ are the retarded values. The respective V and \vec{A} are called the *retarded electric scalar potential* and the *retarded magnetic vector potential*.

Time-Varying Potentials (contd.)

• It means that the time t in $\rho_v(x, y, z, t)$ or $\vec{J}(x, y, z, t)$ is replaced by retarded time t' given by:

$$t' = t - \frac{R}{u}$$

- Where, $R = |\bar{r} \bar{r'}|$ is the distance between the source point $\bar{r'}$ and the observation point \bar{r} .
- Whereas: $u = \frac{1}{\sqrt{\varepsilon \mu}}$

u is the velocity of wave propagation. In free space, $u = c \cong 3 \times 10^8 \ m/s$ is the speed of light in vacuum.

ECE230

Example – 4

• Show that another form of Faraday's law is: $\vec{E} = -\frac{\partial \vec{A}}{\partial t}$

where \vec{A} is the magnetic vector potential.

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \qquad \vec{B} = \nabla \times \vec{A}$$

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} \left(\nabla \times \vec{A} \right) = \nabla \times \left(-\frac{\partial \vec{A}}{\partial t} \right)$$

$$\therefore \vec{E} = -\frac{\partial \vec{A}}{\partial t}$$

Example – 5

• Assuming source free region, derive the diffusion equation:

ECE230

$$\nabla^{2}\vec{E} = \mu\sigma\frac{\partial\vec{E}}{\partial t} + \mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}}$$