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Example – 1 
• There is a square loop of wire in the 𝑧 = 0 plane carrying 2𝑚𝐴 in the field 

of an infinite filament on the 𝑦 − 𝑎𝑥𝑖𝑠 as shown. Find the total force on 
the loop.  
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Example – 1 (contd.) 

• The field produced by the straight filament in the plane of the loop is: 
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Example – 2  
• By injecting an electron beam normally to the plane edge of a uniform 

field 𝐵𝑜𝑎 𝑧, electrons can be dispersed according to their velocity as 
shown in the figure below.  

(a) Show that the electrons would be ejected out of the field in path parallel 
to the input beam as shown. 

(b) Derive an expression for the exit distance 𝑑 above the entry point.  
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Example – 2 (contd.)  

(a) ( )F ma Q u B  We know: ( )F ma e u B   
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Example – 2 (contd.)  
• In order to determine the terms 𝑢𝑥 and 𝑢𝑦, let us combine and simplify  

the expressions. It results into: 
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• The solution is:  cos sinxu A gt B gt 

• Similarly:  sin cosyu A gt B gt 

• Let us assume: at 𝑡 = 0 → 𝑢𝑥 = 𝑢0 , 𝑢𝑦 = 0   

• Then: 𝐴 = 𝑢0 𝑎𝑛𝑑 𝐵 = 0 

• Therefore: 
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Example – 2 (contd.)  

• At 𝑡 = 0: 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0 

• It gives: 𝑐1 = 0 and 𝑐2 =
𝑢0

𝑔
 

• Therefore: 
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It shows that the electron will move in a circle centered at 

0,
𝑢0

𝑔
. But since the field does not exist throughout the 

circular region, the electron passes through a semi-circle and 
leaves the field horizontally.  

(b) Its twice the radius of the semi circle: 
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Example – 3  
• A rectangular loop carrying current 𝐼2 is placed parallel to infinitely long 

filamentary wire carrying current 𝐼1 as shown in figure. Show that the 
force experienced by the loop is given by:  
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Example – 3 (contd.)  

• Let the force on the loop be: 1 2 3 4mF F F F F   

122I dl B 

For infinitely long wire: 
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Example – 3 (contd.)  
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• The summation of all these expressions give the force on the loop: 
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𝑻 

𝑭 

𝒓 
• The torque 𝑇 is the vector product of 

the force 𝐹  and the moment arm 𝑟 .  

T r F 

Magnetic Torque  

• For the following configuration, the force on the loop is given by:  
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Magnetic Torque (contd.)  

• Where:  0F IBl 𝐵 is considered uniform here 

• Apparently no force is exerted on the loop → however, 𝐹 0 and −𝐹 0 acts on 
two different points on the loop, thereby creating a couple.    

• If normal to the loop plane makes an angle 𝛼 with 𝐵 then: 

sinT BIlw  sinT BIS 

Let us define a quantity: ˆ
nm ISa

Magnetic dipole moment 

• Therefore: T m B  Although this expression is obtained for 
rectangular loop but is applicable for 
planar loop of any arbitrary  shape.  



Indraprastha Institute of 

Information Technology Delhi ECE230 

Example – 4  

• A rectangular coil of area 10 𝑐𝑚2 carrying current  50𝐴 lies on plane 
2𝑥 + 6𝑦 − 3𝑧 = 7 such that the magnetic moment of the coil is directed 
away from the origin. Calculate its magnetic moment.  

ˆ
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 4
ˆ ˆ ˆ2 6 3
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( , , ) 2 6 3 0f x y z x y z   
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Example – 5  

• The coil of last example is surrounded by a uniform field 0.6𝑎 𝑥 +
0.4𝑎 𝑦 + 0.5𝑎 𝑧 𝑊𝑏/𝑚2.  

(a) Find the torque on the coil. 
(b) Show that the torque on the coil is maximum if placed on plane  

2𝑥 − 8𝑦 + 4𝑧 = 84. Calculate the magnitude of the maximum torque.  

T m B 

x y z

x y z

x y z

a a a

T m m m
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Magnetic Dipole  
• A bar magnet or small filamentary current loop is usually referred to as a 

magnetic dipole.  
• The reason will be soon apparent.  

• The magnetic vector potential 
at P is: 

0

4

I dl
A

r




 

• Let us consider the magnetic field 𝐵 at an observation point 𝑃(𝑟, 𝜃, ϕ) due 
to a circular loop carrying current 𝐼. 
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Magnetic Dipole (contd.)  
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These are similar to the expressions for 𝑉 and  𝐸 
due to an electric dipole 
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It is therefore reasonable to regard a small current 
loop as a magnetic dipole 
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Magnetic Dipole (contd.)  

• A short permanent magnet can also be 
considered as a magnetic dipole. 

• The 𝐵 lines due to bar are similar to those 
due to a small current loop. 

• 𝐵 lines around the magnetic 
dipole can be illustrated as: 
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Magnetic Materials 
• Recall in dielectrics, electric dipoles were created when an 𝐸 − 𝑓𝑖𝑒𝑙𝑑 was 

applied. 

• Therefore, we defined permittivity ε, electric flux density 𝐷, and a new set 
of electrostatic equations. 

• Recall that atoms and molecules, having both positive (i.e., protons) and 
negative (i.e., electron) charged particles can form electric dipoles. 

• It will be apparent that that atoms and molecules can also form magnetic 
dipoles! 

Q: How?? 

A: Recall a magnetic dipole is formed when current  flows in a small 
loop. Current, of course, is moving charge, therefore charge moving 
around a small loop forms a magnetic dipole. 

Molecules and atoms often exhibit electrons moving 
around in small loops! 
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𝐼 

Magnetic Materials (contd.) 

• Again, let us use our ridiculously simple 
model of an atom: 

-  → electron  
     (negative charge) 

+  → nucleus  
     (positive charge) 

• An electron with charge Q orbiting around a nucleus at velocity 𝑢 forms a 
small current loop, where 𝐼 = 𝑄 𝑢 . 

𝑄 

 𝑢 

This forms a 
magnetic 

dipole 
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Magnetic Materials (contd.) 
• This is a very simple atomic explanation of how magnetic dipoles are 

formed in material.  
• In reality, the physical mechanisms that lead to magnetic dipoles can be 

far more complex.  

• For example, electron spin can also create a magnetic dipole moment. 

Orbital magnetic 
moment  

Spin magnetic 
moment  
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• Both these electronic motions produce internal magnetic fields 𝐵𝑖 that are 
similar to the magnetic field produced by a current loop as shown.   

Magnetic Materials (contd.) 

This equivalent current loop has a 
magnetic moment of 𝑚 = 𝐼𝑏𝑆𝑎 𝑛, 

where 𝑆 is the area of the loop 
and 𝐼𝑏 is the bound current 

(bound to the atom). 
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Magnetic Materials (contd.) 
• Typically, the atoms/molecules of materials 

exhibit either no magnetic dipole moment (i.e., 
𝑚 = 0 ), or the dipole moments of each 
atom/molecule are randomly oriented, such that 
the net dipole moment is zero. 

𝐵 = 0,𝑀 = 0 • Therefore, for N randomly oriented 
magnetic dipoles 𝑚𝑛, we find:  

1
0n

n

m
N



• Similarly, the total magnetic 
flux density created by these 
magnetic dipoles is also zero: 

0n

n

B 

• However, sometimes the magnetic 
dipole moment of each 
atom/molecule is not randomly 
oriented, but in fact are aligned! 

𝐵 
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Magnetic Materials (contd.) 
Q: Why would these magnetic dipoles be aligned? 

A: Two possible reasons: 
1) the material is a permanent magnet. 

2) the material is immersed in some magnetizing field 𝐵. 
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The Magnetization Vector 

• Recall that we defined the Polarization vector of a dielectric material as 
the electric dipole density, i.e.: 

2

_

_

n
p dipole moment C

P
v unit volume m

 
 

  



• Similarly, we can define a Magnetization vector  of a material to be the 
density of magnetic dipole moments: 

_ _

0 _

nm magnetic dipole moment A
M

v unit volume m

 
 

   



A medium for which 𝑀 is not zero everywhere is said 
to be magnetized 
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• Note if the dipole moments of atoms/molecules within a material are 

completely random, the Magnetization vector will be zero (i.e., 𝑀 = 0). 
• However, if the dipoles are aligned, the Magnetization vector will be non-

zero (i.e., 𝑀 ≠ 0). 
• Furthermore, for a differential volume 𝑑𝑣′, the magnetic moment is 

𝑑𝑚 = 𝑀𝑑𝑣′. 

The Magnetization Vector (contd.) 
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• Therefore the vector magnetic potential due to 𝑑𝑚 can be expressed as: 
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The Magnetization Vector (contd.) 

0

3
'

4
v

M R
A dv

R






  

Q: This is freaking me out!! I thought 

that currents 𝑱  were responsible for 
creating magnetic vector potential. In 

fact, I could have sworn that: 

0 '
4

v

J
A dv

R




 

A: Relax, both expressions are correct! 
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The Magnetization Currents 

• Recall that we could attribute the electric field 

created by Polarization Vector 𝑃 to polarization (i.e., 
bound) charges 𝜌𝑣𝑝 and 𝜌𝑠𝑝. 

.vp P  

ˆ.sp nP a 

• Similarly, we can attribute the magnetic vector potential (and therefore 

the magnetic flux density) created by Magnetization Vector 𝑀 to 

Magnetization Currents 𝐽 𝑏 and 𝐾𝑏, the bound volume current density 
(i.e., magnetization current density) and bound surface current density 
respectively.  

0

3
'

4
v

M R
A dv

R






 • We have: • Earlier we came across 

the expression: 3

1
'

R

R R

 
   

 

• Therefore: 
0 1
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A M dv
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 
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 

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The Magnetization Currents (contd.) 

• We can use the identity: 1 1
' ' '

M
M M

R R R

 
      

 

• Therefore we can express: 
0 0

ˆ'
' '

4 4

n

v S

M M a
A dv ds

R R

 

 

  
  

0 0 '
'

4 4

bb

v S

J K ds
A dv

R R

 

 
  

where: 

bJ M ˆb nK M a 

Therefore, we find that the magnetization of some material, as 

described by magnetization vector 𝑀, creates effective currents 𝐽 𝑏 and 

𝐾𝑏. We call these effective currents magnetization currents. 

𝐽 𝑏 and 𝐾𝑏 can be derived from 𝑀 and hence are not commonly used  
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The Magnetic Field  

• Now that we have defined magnetization current, we find that Ampere’s 
Law for fields within some material becomes: 

 0 bB J J    0B J M  

• This of course is analogous to the expression we derived for Gauss’s Law 
in a dielectric media: 

0 0

.
.

v vp v P
E

  

 

 
  

Recall that we removed the polarization charge from this  

expression by defining a new vector field 𝐷, leaving us with the 
more general expression of Gauss’s Law: 

. vD  
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The Magnetic Field (contd.)  

Q: Can we similarly define a new vector field to 
“take care” of magnetization current ?? 

 

A: Yes! We call this vector field the magnetic field 𝐻. 

• Let’s begin by rewriting Ampere’s Law as: 

0 0bB J J   

• Yuck! Now we see clearly the problem. In free space, if we know current 

distribution 𝐽 , we can find the resulting magnetic flux density  𝐵 using the 
Biot-Savart Law: 

0

3
'

4
v

J R
B dv

R






 

But this is the solution for current in free space! It is 
no longer valid if some material is present! 
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The Magnetic Field (contd.)  
Q: Why? 

A: Because, the magnetic flux density produced by current 𝐽  may 
magnetize the material (i.e., produce magnetic dipoles), thus producing 

magnetization currents 𝐽 𝑏 . 

These magnetization currents 𝐽 𝑏 will also produce a magnetic flux 

density—a modification of vector field 𝐵 that is not accounted for 
in the Biot-Savart expression shown above! 

• To determine the correct solution, we first recall that: bJ M

• Therefore Ampere’s Law is: 0 0B M J    

0

B
M J



 
   

 • Now let’s define a new vector field 𝐻, called 
the magnetic field: 

0

B
H M


 

• Therefore: H J 
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The Magnetic Field (contd.)  
• For most materials, it has been  found that the 

magnetization vector 𝑀  is directly proportional to the 

magnetic field 𝐻: 

mM H

where the proportionality coefficient χ𝑚 is the 
magnetic susceptibility of the material. 

• Note that for a given magnetic field 𝐻, as χ𝑚 increases, the magnetization 

vector 𝑀 increases. 
• Magnetic susceptibility χ𝑚 therefore indicates how susceptible the 

material is to magnetization. 
• In other words, χ𝑚 is a measure of how easily (or difficult) it is to create 

and align magnetic dipoles (from atoms/molecules) within the material. 

Again, note the analogy to electrostatics. We defined earlier electric 
susceptibility χ𝑒, which indicates how susceptible a material is to 

polarization (i.e., the creation of electric dipoles). 
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The Magnetic Field (contd.)  

• Therefore: 
0

B
H M


 

0

m

B
H H


   0 1 m H B  

Hey! We know the magnetic field 𝐻 and magnetic flux density 
are related by a simple constant! 

B H

_
Henrys

material permeability
meter


 
 
 

 0 1 m    

• The expression can be further simplified by defining a relative 
permeability: 

1r m  



Indraprastha Institute of 

Information Technology Delhi ECE230 

The Magnetic Field (contd.)  

• Therefore: 
0 rB H H   

• In other words, if the relative permeability of some material was, say, 
μ𝑟 = 2, then the permeability of the material is twice that of the 
permeability of free space (i.e., μ = 2μ0). This perhaps is more readily 
evident when we write: 

0

r







Note that μ  and/or μ𝑟 are proportional to magnetic susceptibility 
χ𝑚. As a result, permeability is likewise an indication of how 

susceptible a material is to magnetization. 

• If μ𝑟 = 1, this susceptibility is that of free space (i.e., none!). 
• Alternatively, a large μ𝑟 indicates a material that is easily magnetized. 
• For example, the relative permeability of iron is μ𝑟 = 4000 ! 

Only valid for linear isotropic 
materials 
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3

1
'

4
v

J R
H dv

R


 

• Now, we are finally able to determine the magnetic flux density in some 

material, produced by current density 𝐽 ! 

• Since 𝐵 = μ𝐻 and: 

The Magnetic Field (contd.)  

• we find the desired solution: 
3

'
4

v

J R
B dv

R






 

Comparing this result with the Biot-Sarvart Law for free space, we 
see that the only difference is that μ0 has been replaced with μ. 

This last result is therefore a more general form of the Biot-Savart Law, 
giving the correct result for fields within some material with permeability μ. 

Of course, the “material” could be free space. However, the expression 
above will still provide the correct answer; because for free space μ = μ0, 

thus returning the equation to its original (i.e., free space) form! 
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The Magnetic Field (contd.)  

Summarizing, we can attribute the existence of a magnetic field 𝐻 to 

conduction current 𝐽 , while we attribute the existence of magnetic flux 
density to the total current density, including the magnetization current. 


