

ECE230

<u>Lecture – 15</u>

Date: 12.03.2015

- Magnetic Torque, Dipole and Moment
- Magnetization in Materials
- Magnetic Field in Materials

Example – 1

• There is a square loop of wire in the z = 0 plane carrying 2mA in the field of an infinite filament on the y - axis as shown. Find the total force on the loop.

ECE230

Example – 1 (contd.)

• The field produced by the straight filament in the plane of the loop is:

• Therefore:

$$\overrightarrow{F_m} = I_{loop} \oint \overrightarrow{dl} \times \overrightarrow{B}$$

$$\Rightarrow \overrightarrow{F_m} = 2 \times 10^{-3} \times 3 \times 10^{-6} \left[\int_{x=1}^3 dx \hat{a}_x \times \frac{\hat{a}_z}{x} + \int_{y=0}^2 dy \hat{a}_y \times \frac{\hat{a}_z}{3} + \int_{x=3}^1 dx \hat{a}_x \times \frac{\hat{a}_z}{x} + \int_{y=2}^0 dy \hat{a}_y \times \frac{\hat{a}_z}{1} \right]$$

$$\therefore \overrightarrow{F_m} = -8\hat{a}_x \mathbf{n} \mathbf{N}$$

Example – 2

• By injecting an electron beam normally to the plane edge of a uniform field $B_o \hat{a}_z$, electrons can be dispersed according to their velocity as shown in the figure below.

ECE230

- (a) Show that the electrons would be ejected out of the field in path parallel to the input beam as shown.
- (b) Derive an expression for the exit distance d above the entry point.

Indraprastha Institute of Information Technology Delhi

Example – 2 (contd.)

du

(a) We know:
$$\vec{F} = m\vec{a} = Q(\vec{u} \times \vec{B})$$

 $\Rightarrow -\frac{m}{e}\frac{d\vec{u}}{dt} = \begin{vmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \\ u_x & u_y & u_z \\ 0 & 0 & B_0 \end{vmatrix}$
 $\xrightarrow{m} \frac{d\vec{u}}{e} = -u_y B_0 \vec{a}_x + u_x B_0 \vec{a}_y$

• From the above expression we can deduce:

$$\frac{du_x}{dt} = -u_y \frac{eB_0}{m} = -u_y g \qquad \text{Where: } g = \frac{eB_0}{m}$$

٥R

Example – 2 (contd.)

• In order to determine the terms u_x and u_y , let us combine and simplify the expressions. It results into:

- The solution is: $u_x = A\cos gt + B\sin gt$
- Similarly: $u_y = A \sin gt B \cos gt$
- Let us assume: at $t = 0 \rightarrow u_{\chi} = u_0$, $u_{\chi} = 0$
- Then: $A = u_0$ and B = 0
- Therefore:

• Therefore:

• It gives:
$$c_1 = 0$$
 and $c_2 = \frac{u_0}{g}$

• At t = 0: x = 0 and y = 0

Example – 2 (contd.)

$$x = \frac{u_0}{g} \sin gt \qquad y = \frac{u_0}{g} \left(1 - \cos gt\right)$$

• Eventually:
$$x^2 + \left(y - \frac{u_0}{g}\right)^2 = \left(\frac{u_0}{g}\right)^2$$

It shows that the electron will move in a circle centered at $\left(0, \frac{u_0}{g}\right)$. But since the field does not exist throughout the circular region, the electron passes through a semi-circle and leaves the field horizontally.

(b) Its twice the radius of the semi circle: $d = \frac{2u_0}{g} = \frac{2u_0m}{B_0e}$

Example – 3

• A rectangular loop carrying current I_2 is placed parallel to infinitely long filamentary wire carrying current I_1 as shown in figure. Show that the force experienced by the loop is given by:

$$\overrightarrow{F_m} = -\frac{\mu_0 I_1 I_2 b}{2\pi} \left[\frac{1}{\rho_0} - \frac{1}{\rho_0 + a} \right] \hat{a}_\rho \mathbf{N}$$

Indraprastha Institute of Information Technology Delhi

 \mathbf{F}_2

3

4

F_ρ

 \mathbf{F}_1 .

F_w

0

Example – 3 (contd.)

• Let the force on the loop be: $\vec{F_m} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4$

For infinitely long wire:

$$\vec{B}_1 = \frac{\mu_0 I_1}{2\pi\rho_0} \hat{a}_{\phi}$$

 $= I_2 \oint \overline{dl}_2 \times \overline{B}_1$

ECE230

Example – 3 (contd.)

• Similarly

• The summation of all these expressions give the force on the loop:

$$\overrightarrow{F_m} = -\frac{\mu_0 I_1 I_2 b}{2\pi} \left[\frac{1}{\rho_0} - \frac{1}{\rho_0 + a} \right] \hat{a}_\rho \mathbf{N}$$

Magnetic Torque

The torque \vec{T} is the vector product of the force \vec{F} and the moment arm \bar{r} .

v

Magnetic Torque (contd.)

- Where: $|\vec{F}_0| = IBl$ \overleftarrow{B} is considered uniform here
- Apparently no force is exerted on the loop \rightarrow however, \vec{F}_0 and $-\vec{F}_0$ acts on two different points on the loop, thereby creating a couple.
- If normal to the loop plane makes an angle α with \vec{B} then:

$$|\vec{T}| = BIIw \sin \alpha$$
Let us define a quantity: $\vec{m} = IS\hat{a}_n$
Magnetic dipole moment

• Therefore: $\vec{T} = \vec{m} \times \vec{B}$
Although this expression is obtained for rectangular loop but is applicable for planar loop of any arbitrary shape.

Example – 4

• A rectangular coil of area $10 \ cm^2$ carrying current 50A lies on plane 2x + 6y - 3z = 7 such that the magnetic moment of the coil is directed away from the origin. Calculate its magnetic moment.

Example – 5

- The coil of last example is surrounded by a uniform field $0.6\hat{a}_x + 0.4\hat{a}_y + 0.5\hat{a}_z Wb/m^2$.
- (a) Find the torque on the coil.
- (b) Show that the torque on the coil is maximum if placed on plane $2x 8y + 4z = \sqrt{84}$. Calculate the magnitude of the maximum torque.

Magnetic Dipole

- A bar magnet or small filamentary current loop is usually referred to as a magnetic dipole.
- The reason will be soon apparent.
- Let us consider the magnetic field \vec{B} at an observation point $P(r, \theta, \phi)$ due to a circular loop carrying current *I*.

• The magnetic vector potential at P is:

$$\left(\vec{A} = \frac{\mu_0 I}{4\pi} \oint \frac{\overline{dl}}{r}\right)$$

Magnetic Dipole (contd.)

It is therefore reasonable to regard a small current loop as a magnetic dipole

Magnetic Dipole (contd.)

• \vec{B} lines around the magnetic dipole can be illustrated as:

- A short permanent magnet can also be considered as a magnetic dipole.
- The \vec{B} lines due to bar are similar to those due to a small current loop.

ECE230

Magnetic Materials

- Recall in dielectrics, electric dipoles were created when an $\vec{E} field$ was applied.
- Therefore, we defined permittivity ε , electric flux density \vec{D} , and a new set of electrostatic equations.
- Recall that **atoms and molecules**, having both positive (i.e., protons) and negative (i.e., electron) charged particles can form **electric dipoles**.
- It will be apparent that that atoms and molecules can also form magnetic dipoles!

Q: How??

A: Recall a magnetic dipole is formed when current flows in a small loop. Current, of course, is moving charge, therefore charge moving around a small loop forms a magnetic dipole.

Molecules and atoms **often** exhibit electrons moving around in small loops!

Indraprastha Institute of Information Technology Delhi

Magnetic Materials (contd.)

- Again, let us use our ridiculously simple model of an atom:
 - → electron (negative charge)
 - > nucleus (positive charge)

• An electron with charge Q orbiting around a nucleus at velocity \vec{u} forms a small current loop, where $I = Q |\vec{u}|$.

Magnetic Materials (contd.)

- This is a **very simple** atomic explanation of how magnetic dipoles are formed in material.
- In reality, the physical mechanisms that lead to magnetic dipoles can be far more complex.
- For example, electron spin can also create a magnetic dipole moment.

Magnetic Materials (contd.)

• Both these electronic motions produce internal magnetic fields \vec{B}_i that are similar to the magnetic field produced by a current loop as shown.

Magnetic Materials (contd.)

- Typically, the atoms/molecules of materials exhibit either **no** magnetic dipole moment (i.e., $\vec{m} = 0$), or the dipole moments of each atom/molecule are **randomly oriented**, such that the **net** dipole moment is **zero**.
- Therefore, for N randomly oriented magnetic dipoles \vec{m}_n , we find:

$$\frac{1}{N}\sum_{n}\vec{m}_{n}=0$$

• Similarly, the **total** magnetic flux density created by these magnetic dipoles is **also zero**:

$$\sum_{n} \vec{B}_{n} = 0$$

ECE230

However, sometimes the magnetic dipole moment of each atom/molecule is **not** randomly oriented, but in fact are **aligned**!

ECE230

Magnetic Materials (contd.)

- **Q: Why** would these magnetic dipoles be aligned?
- A: Two possible reasons:
- 1) the material is a **permanent magnet**.
- **2)** the material is immersed in some **magnetizing field** \vec{B} .

The Magnetization Vector

 Recall that we defined the Polarization vector of a dielectric material as the electric dipole density, i.e.:

$$\vec{P} \doteq \frac{\sum \vec{p}_n}{\Delta v} \left[\frac{dipole_moment}{unit_volume} = \frac{C}{m^2} \right]$$

• Similarly, we can define a **Magnetization vector** of a material to be the density of **magnetic** dipole moments:

$$\overrightarrow{M} \doteq \frac{\sum \overrightarrow{m_n}}{\Delta v \to 0} \left[\frac{magnetic_dipole_moment}{unit_volume} = \frac{A}{m} \right]$$

A medium for which \overrightarrow{M} is not zero everywhere is said to be magnetized

The Magnetization Vector (contd.)

- Note if the dipole moments of atoms/molecules within a material are **completely random**, the Magnetization vector will be **zero** (i.e., $\vec{M} = 0$).
- However, if the dipoles are **aligned**, the Magnetization vector will be **non**zero (i.e., $\vec{M} \neq 0$).
- Furthermore, for a differential volume dv', the magnetic moment is $\overrightarrow{dm} = \overrightarrow{M}dv'$.
- Therefore the vector magnetic potential due to \overrightarrow{dm} can be expressed as:

$$\overrightarrow{dA} = \frac{\mu_0 \overrightarrow{M} \times \widehat{a}_R}{4\pi R^2} dv'$$

$$\overrightarrow{dA} = \frac{\mu_0 \overrightarrow{M} \times \overrightarrow{R}}{4\pi R^3} dv'$$

$$\therefore \overrightarrow{A} = \iiint_v \frac{\mu_0 \overrightarrow{M} \times \overrightarrow{R}}{4\pi R^3} dv'$$

The Magnetization Vector (contd.)

$$\therefore \vec{A} = \iiint_{v} \frac{\mu_{0} \vec{M} \times \vec{R}}{4\pi R^{3}} dv'$$

Q: This is freaking me out!! I thought that **currents** \vec{J} were responsible for creating magnetic vector potential. In fact, I could have sworn that:

 $\vec{A} = \iiint_{v} \frac{\mu_0 J}{4\pi R} dv'$

A: Relax, both expressions are correct!

The Magnetization Currents

• Recall that we could attribute the electric field created by Polarization Vector \vec{P} to **polarization** (i.e., bound) charges ρ_{vp} and ρ_{sp} .

$$\rho_{vp} = -\nabla . \vec{P}$$
$$\rho_{sp} = \vec{P} . \hat{a}_n$$

- Similarly, we can **attribute** the magnetic vector potential (and therefore the magnetic flux density) created by Magnetization Vector \vec{M} to **Magnetization Currents** $\vec{J_b}$ and $\vec{K_b}$, the bound volume current density (i.e., magnetization current density) and bound surface current density respectively.
- We have:

$$\vec{A} = \iiint_{v} \frac{\mu_{0} \vec{M} \times \vec{R}}{4\pi R^{3}} dv'$$

1.1

Earlier we came across the expression:

$$\frac{\vec{R}}{R^3} = \nabla' \left(\frac{1}{R}\right)$$

• Therefore:
$$\vec{A} = \frac{\mu_0}{4\pi} \iiint_{v} \vec{M} \times \nabla' \left(\frac{1}{R}\right) dv'$$

 $\vec{K}_b = \vec{M} \times \hat{a}_n$

The Magnetization Currents (contd.)

- We can use the identity: $\overrightarrow{M} \times \nabla' \left(\frac{1}{R}\right) = \frac{1}{R} \nabla' \times \overrightarrow{M} \nabla' \times \frac{M}{R}$ Therefore we can express: $\vec{A} = \frac{\mu_0}{4\pi} \iiint \frac{\nabla' \times \vec{M}}{R} dv' + \frac{\mu_0}{4\pi} \oiint \frac{\vec{M} \times \hat{a}_n}{R} ds'$

where:

Therefore, we find that the magnetization of some material, as described by magnetization vector \vec{M} , creates **effective** currents \vec{J}_h and K_h . We call these effective currents **magnetization currents**. \vec{J}_{b} and \vec{K}_{b} can be derived from \vec{M} and hence are not commonly used

The Magnetic Field

 Now that we have defined magnetization current, we find that Ampere's Law for fields within some material becomes:

 This of course is analogous to the expression we derived for Gauss's Law in a dielectric media:

$$\nabla . \vec{E} = \frac{\rho_v + \rho_{vp}}{\varepsilon_0} = \frac{\rho_v - \nabla . \vec{P}}{\varepsilon_0}$$

Recall that we **removed** the polarization charge from this expression by defining a **new** vector field \vec{D} , leaving us with the more **general** expression of Gauss's Law:

Q: Can we similarly define a **new** vector field to "take care" of **magnetization** current ??

A: Yes! We call this vector field the **magnetic field** \vec{H} .

• Let's begin by **rewriting** Ampere's Law as:

$$\nabla \times \vec{B} - \mu_0 \vec{J}_b = \mu_0 \vec{J}$$

• Yuck! Now we see clearly the problem. In **free space**, if we know current distribution \vec{J} , we can find the resulting magnetic flux density \vec{B} using the **Biot-Savart** Law: $\vec{B} = \frac{\mu_0}{4\pi} \iiint \vec{J} \times \vec{R} / R^3 dv'$

But this is the solution for current in **free space**! It is **no longer valid** if some **material** is present!

 $\nabla \times$

 $-\overrightarrow{M}$

The Magnetic Field (contd.)

Q: Why?

A: Because, the magnetic flux density produced by current \vec{J} may **magnetize** the material (i.e., produce magnetic dipoles), thus producing **magnetization currents** \vec{J}_b .

These magnetization currents \vec{J}_b will **also** produce a magnetic flux density—a **modification** of vector field \vec{B} that is **not** accounted for in the Biot-Savart expression shown above!

• To determine the correct solution, we first recall that: $\vec{J}_b = \nabla \times \vec{M}$

Therefore Ampere's Law is: $\nabla \times \vec{B} - \mu_0 \nabla \times \vec{M} = \mu_0 \vec{J}$

• Now let's define a **new** vector field \vec{H} , called $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{R}$ the **magnetic field**:

• Therefore:
$$\nabla \times \vec{H} = \vec{J}$$

• For most materials, it has been found that the magnetization vector \vec{M} is directly **proportional** to the $\vec{M} = \chi_m \vec{H}$ magnetic field \vec{H} : where the proportionality coefficient χ_m is the

magnetic susceptibility of the material.

- Note that for a given magnetic field \vec{H} , as χ_m increases, the magnetization vector \vec{M} increases.
- Magnetic susceptibility χ_m therefore indicates how **susceptible** the material is to **magnetization**.
- In other words, χ_m is a measure of how easily (or difficult) it is to create and align **magnetic dipoles** (from atoms/molecules) within the **material**.

Again, note the **analogy** to electrostatics. We defined earlier **electric** susceptibility χ_e , which indicates how susceptible a material is to **polarization** (i.e., the creation of **electric** dipoles).

Indraprastha Institute of ECE230 Information Technology Delhi The Magnetic Field (contd.) Therefore: $\left[\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \right] \longrightarrow \left[\vec{H} = \frac{\vec{B}}{\mu_0} - \chi_m \vec{H} \right] \longrightarrow \left[\mu_0 (1 + \chi_m) \vec{H} = \vec{B} \right]$ Hey! We know the magnetic field \vec{H} and magnetic flux density are related by a simple constant! $\vec{B} = \mu \vec{H}$ $\therefore \mu = \mu_0 (1 + \chi_m)$ $\mu \doteq material_permeability \left| \frac{Henrys}{material} \right|$

 The expression can be **further** simplified by defining a **relative** permeability:

$$\mu_r = 1 + \chi_m$$

• Therefore:

$$\vec{B} = \mu \vec{H} = \mu_0 \mu_r \vec{H}$$

nly valid for linear isotropic materials

• In other words, if the **relative** permeability of some material was, say, $\mu_r = 2$, then the **permeability** of the material is **twice** that of the permeability of **free space** (i.e., $\mu = 2\mu_0$). This perhaps is more readily evident when we write:

$$\mu_r = \frac{\mu}{\mu_0}$$

Note that μ and/or μ_r are **proportional** to magnetic susceptibility χ_m . As a result, permeability is likewise an indication of how **susceptible** a material is to **magnetization**.

- If $\mu_r = 1$, this susceptibility is that of **free space** (i.e., **none**!).
- Alternatively, a large μ_r indicates a material that is easily magnetized.
- For example, the relative permeability of **iron** is $\mu_r = 4000$!

- Now, we are finally able to determine the magnetic flux density in some material, produced by current density \vec{J} !
- Since $\vec{B} = \mu \vec{H}$ and:

$$\vec{H} = \frac{1}{4\pi} \iiint_{v} \frac{\vec{J} \times \vec{R}}{R^{3}} dv'$$

we find the desired solution:

$$\overrightarrow{B} = \frac{\mu}{4\pi} \iiint_{v} \frac{\overrightarrow{J} \times \overrightarrow{R}}{R^{3}} dv'$$

Comparing this result with the Biot-Sarvart Law for **free space**, we see that the only difference is that μ_0 has been replaced with μ .

This last result is therefore a **more general** form of the Biot-Savart Law, giving the correct result for fields within some **material** with permeability μ . Of course, the "material" **could** be free space. However, the expression above will **still** provide the **correct** answer; because for free space $\mu = \mu_0$, thus returning the equation to its **original** (i.e., free space) form!

Summarizing, we can attribute the existence of a magnetic field \vec{H} to conduction current \vec{J} , while we attribute the existence of magnetic flux density to the total current density, including the magnetization current.