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Applications of Ampere’s Law (contd.)  

Infinite Line Current 

• Let us consider an infinitely long 
filamentary current along the z-axis. 

• To determine 𝐻 at point P, let us form a 
closed path to pass through P.  

• This path is called Amperian path 
(analogous to Gaussian surface). 

On this path: 

ˆdl d a 

I H d    
As 𝐻 is 

parallel  to 𝑑𝑙  
 2I H  

For fixed ρ 
ˆ

2

I
H a


 

ˆ ˆ. .
C

H dl I H a d a     

• From Ampere’s law we can write: 
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Applications of Ampere’s Law (contd.)  
Infinite Sheet of Current 

• Let us consider an infinite current sheet in the 𝑧 = 0 plane.  

• The sheet has a uniform current density 𝐾 = 𝑘𝑦𝑎 𝑦 A/m as shown. 

𝐾 = 𝑘𝑦𝑎 𝑦  

• Consider the sheet as a finite number of filaments cascaded together 
• Field doesn’t vary with 𝑥 and 𝑦 as the source doesn’t vary with 𝑥 and 𝑦 
• 𝐻𝑦 = 0, since current is along  𝑦 − 𝑎𝑥𝑖𝑠 [field is perpendicular to current] 
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𝐾 = 𝑘𝑦𝑎 𝑦  

Applications of Ampere’s Law (contd.)  
Infinite Sheet of Current 

• 𝐻𝑧 = 0, as two symmetric filamentary elements along 𝑥 − 𝑎𝑥𝑖𝑠 will cancel 
the 𝑧 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.  

• Resultant fields will be along 𝑥 − 𝑎𝑥𝑖𝑠 and doesn’t vary with 𝑥 and 𝑦. 

• Apply Ampere’s law along 
1-1’-2’-2-1 

. encl

C

H dl I

1' 2 ' 2 1

1 1 2 1

1 1' 2 ' 2

( ) ( )x z x z enclH dx H dz H dx H dz I        



Indraprastha Institute of 

Information Technology Delhi ECE230 

Applications of Ampere’s Law (contd.)  
Infinite Sheet of Current 

1' 2 ' 2 1

1 1 2 1

1 1' 2 ' 2

( ) ( )x z x z enclH dx H dz H dx H dz I        

Doesn’t vary with x 

Zero contribution from segments 1’-2’ and 1-2 (𝑯𝒛 = 𝟎) 

1 2x x yH L H L k L   1 2x x yH H k  

• Similarly application of Ampere’s law along 3-3’-2’-2-3 results into 

3 2x x yH H k  
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Applications of Ampere’s Law (contd.)  
Infinite Sheet of Current 

1 2x x yH H k  
3 2x x yH H k  

• Simplification gives: 
1 3

2

y

x x

k
H H  2

2

y

x

k
H  

Therefore, it can be said that the field is same for all positive z 
and similarly the same for all negative z 

• Because of symmetry, the magnetic field intensity on one side of the 
current sheet is negative of that on the other. 

2

y

x

k
H  (𝒛 > 𝟎) 

2

y

x

k
H   (𝒛 < 𝟎) 
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Applications of Ampere’s Law (contd.)  
Infinite Sheet of Current 

• If 𝑎 𝑁 is the unit vector normal (outward) to the current sheet, the result 
may be expressed as: 

1
ˆ

2
NH k a 

• Magnetic field doesn’t depend on the distance from the infinite current 

sheet → analogous to 𝐷 𝑓𝑖𝑒𝑙𝑑 of an infinite charge sheet.   

1
ˆ

2
NH k a 

1
ˆ

2
s ND a

• If a second sheet of current flowing in the opposite direction, 𝐾 = −𝑘𝑦𝑎 𝑦,  

is placed at 𝑧 = ℎ, then the field in the region between the sheets is: 

ˆ
NH k a  (𝟎 < 𝒛 < 𝒉) 

• and is zero elsewhere: 0H  (𝒛 < 𝟎, 𝒛 > 𝒉) 
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Applications of Ampere’s Law (contd.)  
Infinitely Long Coaxial Transmission Line 

• Let us consider coaxial 
transmission line with two 
concentric cylinders having 
their axes along the z-axis, 
where the z-axis is out of page. 

• The inner conductor has radius 
a and carries current I, while 
the outer conductor has inner 
radius b and thickness t and 
carries return current –I. 

• Determine field 𝐻 everywhere. 

Since the current distribution is symmetric, we apply Ampere’s law 
along the Amperian path for each of the four possible regions: 

0 ≤ ρ ≤ 𝑎, 𝑎 ≤ ρ ≤ 𝑏, 𝑏 ≤ ρ ≤ 𝑏 + 𝑡, ρ ≥ 𝑏 + 𝑡 
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Applications of Ampere’s Law (contd.)  
Infinitely Long Coaxial Transmission Line 

• For region 𝟎 ≤ 𝝆 ≤ 𝒂, we have: 

2
ˆ

z

I
J a

a
 ˆ

zdS d d a  

2

2

0 0

.

a

enc

I
I J dS d d

a



 

  


 

   
2

2enc

I
I

a


 

Therefore application of Ampere’s law over path L1 gives: 

 
1

2

2
2

L

I
H dl H

a
 


  22

I
H

a





 

• For region 𝒂 ≤ 𝝆 ≤ 𝒃, we have: 
encI I

Therefore application of Ampere’s law over path L2 gives: 

 
2

2
L

H dl H I   
2

I
H


 
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Applications of Ampere’s Law (contd.)  
Infinitely Long Coaxial Transmission Line 

• For region 𝒃 ≤ 𝝆 ≤ 𝒃 + 𝒕, we get: 

.encI I J dS   Here, 𝐽  is the current density of the outer 
conductor and is along −𝑎 𝑧 

 
2 2

ˆ
z

I
J a

b t b
 

  
 

 

2

2 2
0

enc

b

I
I I d d

b t b



 

  
  

 
  
 

 
2 2

2
1

2
enc

b
I I

t bt

 
  

 

2

encI
H


 

2 2

2
1

2 2

I b
H

t bt






 
   

 
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Applications of Ampere’s Law (contd.)  
Infinitely Long Coaxial Transmission Line 

• For region 𝝆 ≥ 𝒃 + 𝒕, we get: 0encI I I   0H 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Example – 1 
• A toroidal coil is a doughnut-shaped structure (called the core) wrapped 

in a closely spaced turns of wire (as shown in figure). For clarity, the turns 
have been shown as spaced far apart, but in practice they are wound in a 
closely spaced arrangement. The toroid is used to magnetically couple 
multiple circuits and to measure the magnetic properties of materials. For 

a toroid with N turns carrying a current 𝐼, determine the magnetic field 𝐻 
in each of the following three regions: 𝑟 < 𝑎, 𝑎 < 𝑟 < 𝑏, and 𝑟 > 𝑏, all in 
the azimuthal plane symmetry of the toroid.  

𝐻  
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Example – 1 (contd.) 
𝐻  

• From Symmetry: It is apparent that 𝐻 is 
uniform in the azimuthal direction.  

• For circular Amperian path 𝑟 < 𝑎, there 
will be no current through the surface of 
the contour.  

• Similarly, for circular Amperian path 
𝑟 > 𝑏, there will be no current through 
the surface of the contour.  

• Therefore, 𝐻 = 0 in the region external to the core. 
• For region inside the core:  Let us construct path of radius 𝑟. 

• For each loop of radius 𝑟, we know that the field 𝐻 at the center of the 
loop points along the axis of the loop, which in this case is the 
𝜑 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

• Now solve using Ampere’s Circuital Law!!!  
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Magnetic Flux Density 

• The magnetic flux density is similar to electric flux density 𝐷.  

Where, μ0 is a constant known as permeability of free 
space. The constant is in henrys per meter (H/m) and has 
the value: 

7

0 4 10 /H m   

• The magnetic flux through a surface 𝑆 is given by: 

.
S

B ds   Webers (Wb) 

0B H

• We know 𝐸 = ε0𝐸 in free space → similarly, the magnetic flux density 𝐵 

is related to the magnetic field intensity 𝐻 as:  
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Magnetic Flux Density (contd.) 
• Magnetic flux line is a path to which 𝐵 is tangential at every point on the 

line.  
• It is the line along which the needle of a magnetic compass will orient 

itself if placed in the presence of a magnetic field.  

• For example, the magnetic 
flux lines due to a straight 
long wire is 

Note that each flux lines is closed and has no beginning or end.  It is 
generally true that magnetic flux lines are closed and do not cross each 

other regardless of the current distribution. 
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Magnetic Flux Density (contd.) 

• In an electrostatic field, the flux 
passing through a closed surface is 
the same as charge enclosed 

(ψ =  𝐷. 𝑑𝑠 = 𝑄)  → thus it is 

possible to have an isolated electric 
charge such that flux lines are not 
necessarily closed. 

• Unlike electric flux lines, magnetic flux 
lines always close upon themselves  
→ therefore, the total flux through a 
closed surface in a magnetic field 

must be zero (ψ =  𝐵. 𝑑𝑠 = 0) → 

not possible to have isolated magnetic 
poles or magnetic charges. 
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Magnetic Flux Density (contd.) 
• Thus, if we desire to have an isolated magnetic pole by dividing a magnetic 

bar successively into two, we end up with pieces each having north and 
south poles → we find it impossible to separate the north pole from the 
south pole. 
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Magnetic Flux Density (contd.) 

. 0B ds 
Law of conservation of magnetic flux or 

Gauss’s law for magnetostatic fields 

. . 0
v

B ds Bdv   

Divergence Theorem 

. 0B  Maxwell Equation 

Magnetic fields have no source or sinks ↔ Magnetic 
field lines are always continuous 
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Maxwell’s Equations for Static Fields 

Differential Form Integral Form Remarks 

. vD  

. 0B 

0E 

H J 

. v

S v

D ds dv 

. 0
S

B ds 

. 0
C

E dl 

. .
C S

H dl J ds 

Gauss’s Law 

Ampere’s Law 

Conservative Nature of 𝐸 

None existence of 
magnetic monopole 
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Magnetic Scalar and Vector Potentials 
• We learnt, some electrostatic problems  became simpler by relating 

electric field intensity  𝐸 𝐸 = −∇𝑉 . 

• Similarly, one can define potential associated with 𝐻 or 𝐵. 

• The idea is that 𝐵 should be defined in such a way that divergence of 𝐵 
should be always zero. 

• Actually, magnetic potential could be scalar denoted as Vm or vector 

denoted as  𝐴 . 

• We define the magnetic  scalar potential as: 

mH V 

This holds for 
any scalar V 

This holds for 

any vector 𝐴  

( ) 0V   .( ) 0A  

• Let us use following two identities: 

 mJ H V  
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Magnetic Scalar and Vector Potentials (contd.) 

( ) 0V  

This Form 

Thus magnetic scalar  potential is valid 

only in a region where 𝐽 = 0 

Vm satisfies Laplace’s equation  2 0mV 

• Furthermore, 
. 0B  .( ) 0A  

Gives definition of vector magnetic potential 

  0mJ H V   

Very useful term for 
defining parameters 

of a permanent 
magnet 
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Magnetic Scalar and Vector Potentials (contd.) 

B A

• We defined: 
04

dQ
V

r
 

• Similarly we can define: 0

4
C

I dl
A

R




  For line current 

0

4
C

Kds
A

R




  For surface current 

0

4
v

Jdv
A

R




  For volume current 
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Magnetic Scalar and Vector Potentials (contd.) 

.
S

B ds  

• We can express flux alternatively as: 

 .
S

A ds   .
C

A dl  
Stoke’s Theorem 

Thus the magnetic flux through a given area can be found 
using the magnetic vector potential 

The magnetic field can be determined through the use of either 

Vm or 𝐴  → the choice is dependent on the type of problem → 
Obviously, Vm can be used only in source free region 

The use of magnetic vector potential provides a powerful approach 
to solving EM problems, particularly those relating to antennas → 

For antennas, its more convenient to find 𝐴  than finding 𝐵  
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Example – 2  

• Given the magnetic vector potential 𝐴 = −
ρ2

4
𝑎 𝑧

Wb

m
, calculate the total 

magnetic flux crossing the surface ϕ =
𝜋

2
, 1 ≤ 𝜌 ≤ 2 𝑚, 0 ≤ 𝑧 ≤ 5 𝑚. 

Method-1: ˆzA
B A a




  


ˆdS d dza

• Therefore: .
S

B ds  
5 2

0 1

1

2
z

d dz


  
 

   3.75Wb 
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Example – 2 (contd.)  

Method-2: 

• We use: 1 2 3 4.
C

A dl        

𝐵 

𝐴  

C where, C is the path bounding surface 
S; ψ1, ψ2, ψ3, and ψ4 are respectively 

the evaluations of  𝐴 . 𝑑𝑙   along 

segments of C labeled 1 to 4. 

• Since 𝐴  has only z-component:  1 3 0  

• Therefore:  
5 0

2 2

2 4

0 5

1
(1) (2)

4
dz dz  

 
     

 
  3.75Wb 
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Example – 3 

• A current distribution gives rise to the vector magnetic potential  

𝐴 = 𝑥2𝑦𝑎 𝑥 + 𝑦2𝑥𝑎 𝑦 − 4𝑥𝑦𝑧𝑎 𝑧
𝑊𝑏

𝑚
. Calculate the following: 

(a)  𝐵 at (−1, 2, 5)      
(b)The flux through the surface defined by z = 1, 0 ≤ x ≤ 1,−1 ≤ y ≤ 4 

(a)  𝐵 = 𝛻 × 𝐴  = −4𝑥𝑧 − 0 𝑎 𝑥 + 0 + 4𝑦𝑧 𝑎 𝑦 + (𝑦2 − 𝑥2)𝑎 𝑧 

∴ 𝐵 −1, 2, 5 = 20𝑎 𝑥 + 40𝑎 𝑦 + 3𝑎 𝑧 
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Example – 3 (contd.) 

(b) The flux through the given surface: 

.
S

B ds   20Wb  
4 1

2 2

1 0y x

y x x y
 

    

Alternatively: 

.
C

A dl   20Wb 
1 4 0

2 2 2

0 1 1

( 1) (1) (4) 0x x y y x x


         


