Analog Circuit Design (ACD) - ECE520

Home Assignment - 6
Total Marks: 10
Submission Deadline: 16.11.2013

Instructions:

- Answer all the questions.
- Please adhere to institute's plagiarism policy.
- Submit before $5: 00 \mathrm{pm}$ on the submission day. No late submission allowed.

Q1. [4 marks] In the following circuit assume that:
$\lambda_{\text {NFET }}=\lambda_{\text {PFET }}=0$, and $\gamma=0, V_{D D}=1.8 \mathrm{~V}, \mathrm{I}_{\text {bias }}=50 \mu \mathrm{~A}, \mathrm{~V}_{\text {TN }}=\left|\mathrm{V}_{\text {TP }}\right|=0.4 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=1 \mathrm{~mA} / \mathrm{V}^{2}, \mu_{\mathrm{P}} \mathrm{C}_{\mathrm{ox}}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$.

Furthermore, assume that:
$(\mathrm{W} / \mathrm{L})_{0}=(\mathrm{W} / \mathrm{L})_{1}=(\mathrm{W} / \mathrm{L})_{2}=(\mathrm{W} / \mathrm{L})_{3}=10$
$(\mathrm{W} / \mathrm{L})_{4}=(\mathrm{W} / \mathrm{L})_{5}=(\mathrm{W} / \mathrm{L})_{6}=(\mathrm{W} / \mathrm{L})_{8}=(\mathrm{W} / \mathrm{L})_{9}=20$
$(W / L)_{7}=5$, and $(W / L)_{10}=60$.

Given that the dc level of the inputs (i.e., input common mode) is 1.2 V :
(a) Find the maximum and minimum voltage of $\mathrm{V}_{\text {out }}$ and $\mathrm{V}_{\text {out } 2}$ for which all the devices stay in saturation.
(b) What is the differential output voltage swing?
(c) Assuming that the circuit is driven by a differential signal, find the magnitude of the differential gain of the circuit, when a resistor of value $10 \mathrm{k} \Omega$ is connected between $V_{\text {out } 1}$ and $V_{\text {out2. }}$.

Q2. [4 marks] For the following circuit, assume that at the frequencies of interest all the device parasitic capacitances can be ignored. Also, assume:
$\lambda_{\text {NFET }}=\lambda_{\text {PFET }}=0$, and $\Upsilon=0, V_{D D}=1.8 \mathrm{~V}, \mathrm{I}_{\text {bias }}=50 \mu \mathrm{~A}, \mathrm{~V}_{\text {TN }}=\left|\mathrm{V}_{\text {TP }}\right|=0.4 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=1 \mathrm{~mA} / \mathrm{V}^{2}, \mu_{\mathrm{P}} \mathrm{C}_{\mathrm{ox}}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$, $(\mathrm{W} / \mathrm{L})_{0}=32,(\mathrm{~W} / \mathrm{L})_{1}=16,(\mathrm{~W} / \mathrm{L})_{2}=16,(\mathrm{~W} / \mathrm{L})_{3}=32, \mathrm{R}_{\mathrm{D}}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {bias } 1}=0.65 \mathrm{~V}$, and $\mathrm{V}_{\text {bias } 3}=1.15 \mathrm{~V}$.

(a) Find the minimum required $\mathrm{V}_{\text {bias2 }}$.
(b) What is the small-signal voltage gain of the circuit?
(c) Calculate (low frequency) input and output impedance of the circuit.

Q3. [2 marks] Calculate the gain of the following circuit (i.e., provide an expression of the gain in terms of circuit parameters):
(a) at very low frequencies
(b) at very high frequencies.

In this problem, neglect all other capacitances that are not shown in the circuit and assume $\gamma=0$ for all three transistors, while $\lambda_{0}=\lambda_{1}=0$ and $\lambda_{2} \neq 0$.

