Analog Circuit Design (ACD) – ECE520

Home Assignment - 4

Total Marks: 10

Submission Deadline: 21.10.2013

Instructions:

- Answer all the questions.
- Please adhere to institute's plagiarism policy.
- Submit before 5:00pm on the submission day. No late submission allowed.

Q1. [3 marks] In the following circuit assume that all transistors are operating in the saturation region. Also, assume that $\lambda = \Upsilon = 0$, $V_{DD}=1.8V$, $V_{bias3}=1.15V$, $V_{TN} = 0.4V$ and $V_{TP} = -0.4V$, $\mu_n C_{ox}=800 \mu A/V^2$, $(W/L)_1 = 40$, $\mu_p C_{ox}=400 \mu A/V^2$, $(W/L)_2 = 40$, $(W/L)_3 = 40$, and $R_S=100\Omega$.

- a) Find V_{bias1} such that the bias current of M_1 is $I_1=1$ mA.
- b) Calculate the small-signal voltage gain $A_{V1}=V_{out1}/V_{in}$.
- c) Calculate the small-signal output impedance seen at the output node V_{out1} .

Q2. [4 marks] Design a common-source amplifier with a diode-connected load based on the schematic shown below with the following design specifications:

- Transistor M₁ is in saturation
- The minimum possible output voltage to keep M₁ in saturation is 0.2V
- Total power consumption of the amplifier is 3mW
- Both transistors have L=0.5µm and for transistor M₂ we have W₂=1 µm

The technology parameters are: λ (NMOS) = 0, Υ = 0, VDD=3V, VTN = 0.5V, $\mu_n C_{ox}$ =1 mA/V2

Find the following values:

- a) DC level of the input
- b) DC level of the output
- c) width (W1) of transistor M1
- d) small-signal gain
- e) Maximum output signal swing for a symmetric output signal.

Q3. [3 marks] In the following circuit assume transistors M_1 and M_2 , and transistors M_3 and M_4 are identical and $\Upsilon = 0$: and $\lambda \neq 0$:

- a) Find the expression for the small-signal differential voltage gain $[V_{out}/(V_{in1}-V_{in2})]$ of the circuit.
- b) What is the gain of the circuit at very low frequencies?
- c) What is the gain of the circuit at very high frequencies?