Analog Circuit Design (ACD) - ECE520

Home Assignment - 2
Total Marks: 10
Submission Deadline: 23.09.2013

Instructions:

- Answer all the questions.
- Please adhere to institute's plagiarism policy.
- Submit before $5: 00 \mathrm{pm}$ on the submission day. No late submission allowed.

Q1. [3 marks] Determine the expression for input impedance $\left(\mathrm{R}_{\mathrm{in}}\right)$ for the following circuit.

Q2. [2 marks] Determine the expression for input impedance $\left(\mathrm{R}_{\mathrm{in}}\right)$ for the following circuit.

Q3. [2.5 marks] Assume that W / L ratios in the following circuit are: $(\mathrm{W} / \mathrm{L})_{1}=2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$; $(\mathrm{W} / \mathrm{L})_{2}=(\mathrm{W} / \mathrm{L})_{3}=(\mathrm{W} / \mathrm{L})_{4}=1 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$. Find the dc value of Vin that will give a dc current in M1 of $110 \mu \mathrm{~A}$. Calculate the small-signal voltage gain and output resistance.

Please use $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=36 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=0.73 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-0.88 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{ox}}=$ $2.5 * 10^{-15} \mathrm{~F}$

Q4. [2.5 marks] A CMOS amplifier is shown below. Assume M1 and M2 operate in saturation. (a) what value of V_{GG} gives $100 \mu \mathrm{~A}$ through M_{1} and M_{2}, (b) what is the dc value of V_{in}, (c) what is the small signal voltage gain $\left(\mathrm{v}_{\mathrm{in}} / \mathrm{v}_{\text {out }}\right)$ for this amplifier.

Please use $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=36 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=0.73 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-0.88 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{ox}}=$ $2.5 * 10^{-15} \mathrm{~F}$

