<u>Analog Circuit Design (ACD) – ECE520</u>

Home Assignment - 2

Total Marks: 10

Submission Deadline: 23.09.2013

Instructions:

- Answer all the questions.
- Please adhere to institute's plagiarism policy.
- Submit before 5:00pm on the submission day. No late submission allowed.

Q1. [3 marks] Determine the expression for input impedance (R_{in}) for the following circuit.

Q2. [2 marks] Determine the expression for input impedance (R_{in}) for the following circuit.

Q3. [2.5 marks] Assume that W/L ratios in the following circuit are: $(W/L)_1=2\mu m/1\mu m$; $(W/L)_2=(W/L)_3=(W/L)_4=1\mu m/1\mu m$. Find the dc value of Vin that will give a dc current in M1 of 110µA. Calculate the small-signal voltage gain and output resistance.

Please use $\mu_n C_{ox} = 110 \mu A/V^2$, $\mu_p C_{ox} = 36 \mu A/V^2$, $V_{TN} = 0.73V$, $V_{TP} = -0.88V$, $V_{DD} = 5V$, $C_{ox} = 2.5*10^{-15}F$

Q4. [2.5 marks] A CMOS amplifier is shown below. Assume M1 and M2 operate in saturation. (a) what value of V_{GG} gives 100 μ A through M₁ and M₂, (b) what is the dc value of V_{in}, (c) what is the small signal voltage gain (v_{in}/v_{out}) for this amplifier.

Please use $\mu_n C_{ox} = 110 \mu A/V^2$, $\mu_p C_{ox} = 36 \mu A/V^2$, $V_{TN} = 0.73V$, $V_{TP} = -0.88V$, $V_{DD} = 5V$, $C_{ox} = 2.5*10^{-15} F$