Analog Circuit Design (ACD) – ECE520

Home Assignment - 1

Total Marks: 10

Submission Deadline: 05.09.2013

Instructions:

- Answer all the questions.
- Please adhere to institute's plagiarism policy.
- Submit before 5:00pm on the submission day. No late submission allowed.

Q1. The CS stage of Fig.1 must provide a voltage gain of 10 with a bias current of 0.5 mA. [1.5 marks] a). Compute the required value of $(W/L)_1$ b). Calculate the required value of V_b if $(W/L)_2 = 20/0.18$ Assume $\lambda_1 = 0.1 \text{ V}^{-1}$ and $\lambda_2 = 0.15 \text{ V}^{-1}$.

Q2. Determine the voltage gain of the stage shown in Fig. 2. Assume $\lambda \neq 0$. **[1.5 marks]**

Fig.2

Q3. A MOSFET when used as an amplifier is typically operated in the saturation region, and a large intrinsic gain (g_m/g_d) is desirable. **[1.5 marks]**

- (a) Explain why there is an optimal gate bias voltage (V_{GS}) to maximize the MOSFET transconductance g_m .
- (b) Does intrinsic gain degrades with decreasing channel length *L*. Give reason for your answer.

Q4. If you want your design to be "Body Effect" free, which type of MOSFET will you prefer and why? **[0.5 marks]**

Q5.The CS stage of Fig. 4 carries a bias current of 1mA. If $R_D = 1K \Omega$ and $\lambda = 0.1V^{-1}$, compute the required value of (W/L) for a gate voltage of 1V. What is the voltage gain of the circuit? **[1.5 marks]**

Q6. Assuming all MOSFETs are in saturation, calculate the small signal voltage gain of the following circuit: **[1.5 marks]**

Q7. Due to a manufacturing error, a parasitic resistor, R_P has appeared in the circuit below. We know that circuit samples free from this error, exhibit $V_{gs}=V_{ds}$ whereas defective samples exhibit $V_{gs}=V_{ds}+V_{th}$. Determine the values of (W/L) and Rp. **[2 marks]**

