Lecture - 19

- Capacitances
- Energy Storage in a Capacitor

Capacitance

- Any two conducting bodies, when separated by an insulating (dielectric) medium, regardless of their shapes and sizes form a capacitor.
- If a dc voltage is connected across them, the surfaces of conductors connected to the positive and negative source terminals will accumulate charges $+Q$ and $-Q$ respectively.
- If a conductor has excess charge, it distributes the charge on its surface in such a manner as to maintain a zero electric field everywhere within the conductor \rightarrow to ensure that electric potential is same at every point in the conductor.

Capacitance (contd.)

- Consider two conductors, with a potential difference of V volts.
- Since there is a potential difference between the conductors, there must be an electric potential field $V(\bar{r})$, and therefore an electric field $\vec{E}(\vec{r})$ in the region between the conductors.

- Likewise, if there is an electric field, then we can specify an electric flux density $\vec{D}(\bar{r})$, which we can use to determine the surface charge density $\rho_{S}(\bar{r})$ on each of the conductors.

Capacitance (contd.)

- We find that if the total net charge on one conductor is Q then the charge on the other will be equal to $-Q$.
- In other words, the total net charge on each conductor will be equal but opposite!
- Note that this does not mean that the surface charge densities on each conductor are equal (i.e., $\left.\rho_{s+}(\bar{r}) \neq \rho_{s-}(\bar{r})\right)$. Rather, it means that:

$$
\oiint_{S_{+}} \rho_{s+}(\bar{r}) d S=-\oiint_{S_{-}} \rho_{s-}(\bar{r}) d S=Q
$$

where surface S_{+}is the surface surrounding the conductor with the positive charge (and the higher electric potential), while the surface S_{-}surrounds the conductor with the negative charge.

Capacitance (contd.)

Q: How much free charge Q is there on each conductor, and how does this charge relate to the voltage V_{0} ?
A: We can determine this from the mutual capacitance C of these conductors!

- The mutual capacitance between two conductors is defined as:

$$
C=\frac{Q}{V} \quad\left[\frac{\text { Coulombs }}{\text { Volts }} \equiv \text { Farad }\right]
$$

where Q is the total charge on each conductor, and V is the potential difference between each conductor (for our example, $V=V_{0}$).

- Recall that the total charge on a conductor can be determined by integrating the surface charge density $\rho_{S}(\bar{r})$ across the entire surface S of a conductor:

$$
Q=\oiint_{S_{+}} \rho_{s+}(\bar{r}) d S=-\oiint_{S_{-}} \rho_{s-}(\bar{r}) d S
$$

Capacitance (contd.)

- But recall also that the surface charge density on the surface of a conductor can be determined from the electric flux density $\vec{D}(\bar{r})$:

$$
\rho_{s}(\bar{r})=\vec{D}(\bar{r}) \cdot \hat{a}_{n}
$$

where \hat{a}_{n} is a unit vector normal to the conductor.

- Combining the two equations, we get:

$$
Q=\oiint_{S_{+}} \vec{D}(\bar{r}) \cdot \hat{a}_{n} d S=-\oiint_{S_{-}} \vec{D}(\bar{r}) \cdot \hat{a}_{n} d S
$$

where we remember that $\overline{d S}=\hat{a}_{n} d S$.

- Hey! This is no surprise! We already knew that:

$$
Q=\oiint_{S} \vec{D}(\bar{r}) \cdot \overline{d S}
$$

This expression is also known as

Capacitance (contd.)

- Note since $\vec{D}(\vec{r})=\varepsilon \vec{E}(\vec{r})$ we can also say:

$$
Q=\oiint_{S} \varepsilon \vec{E}(\bar{r}) \cdot \overline{d S}
$$

- The potential difference V between two conductors can likewise be determined as:

$$
V=\int_{C} \vec{E}(\vec{r}) \cdot \overline{d l}
$$

where C is any contour that leads from one conductor to the other.
Q: Why any contour?
A:

- We can therefore determine the capacitance between two conductors as:

$$
C=\frac{\left.\begin{array}{ll}
Q=\oiint_{s} \varepsilon \vec{E}(\bar{r}) \cdot \overline{d S} \\
V=\int_{c} \vec{E}(\vec{r}) \cdot \overline{d l} & \\
\text { [Farad }]
\end{array}\right) .}{}
$$

- Where the contour C must start at some point on surface S_{+}and end at some point on surface $S_{\text {_ }}$.
- $S_{+}=S_{-}$

Capacitance (contd.)

- Note this expression can be written as: $Q=C V$

In other words, the charge stored by two conductors is equal to the product of their mutual capacitance and the potential difference between them.

Therefore, the greater capacitance, the greater the amount of charge that is stored.

- Furthermore, try taking the time derivative of the above equation:

The Parallel Plate Capacitor

- Consider the geometry of a parallel plate capacitor:

> Recall that we determined the fields and surface charge density of an infinite pair of parallel plates. We can use those results to approximate the fields and charge densities of this finite structure, where the area of each plate is S.

Where:

$V_{0}=$ the potential difference between the plates
$S=$ surface area of each conducting plate
$d=$ distance between plates
$\varepsilon=$ permittivity of the dielectric between the plates

The Parallel Plate Capacitor (contd.)

- For example, we determined that the surface charge density on the upper plate is:

$$
\rho_{s+}(\bar{r})=\frac{\varepsilon V_{0}}{d}
$$

- The total charge on the upper plate is therefore:

$$
Q=\iint_{S_{+}} \rho_{s+}(\bar{r}) d s \square Q=\iint_{S_{+}} \frac{\varepsilon V_{0}}{d} d s \square Q=\frac{\varepsilon V_{0}}{d} \iint_{S_{+}} d s \quad \square Q=\frac{\varepsilon V_{0} S}{d}
$$

- The capacitance of this structure is therefore:

$$
C=\frac{Q}{V} \quad C=\left(\frac{\varepsilon V_{0} S}{d}\right)\left(\frac{1}{V_{0}}\right) \quad \therefore C=\frac{\varepsilon S}{d}
$$

The Parallel Plate Capacitor (contd.)

Therefore, we can increase the capacitance of a parallel plate capacitor by:

1) Increasing surface area S.
2) Decreasing separation distance d.
3) Increasing the dielectric permittivity ε.

The Parallel Plate Capacitor (contd.)

- Consider now the structure:

Note the two upper plates form one conducting structure, and the two bottom plates form another.

Q: What is the capacitance between these two conducting structures?
A: The potential difference between them is V_{0}. The total charge on one conducting structure is simply the sum of the charges on each plate:

$$
Q=Q_{1}+Q_{2}=\frac{\varepsilon V_{0} S_{1}}{d}+\frac{\varepsilon V_{0} S_{2}}{d}
$$

The Parallel Plate Capacitor (contd.)

- Therefore, the capacitance of this structure is:

$$
\begin{array}{r}
C=\frac{Q}{V}=\left(\frac{\varepsilon V_{0}\left(S_{1}+S_{2}\right)}{d}\right)\left(\frac{1}{V_{0}}\right) \\
\left.C=\frac{\varepsilon\left(S_{1}+S_{2}\right)}{d}\right) \\
C=C_{1}+C_{2} \quad C=\frac{\varepsilon S_{1}}{d}+\frac{\varepsilon S_{2}}{d}
\end{array}
$$

But you knew this! The total capacitance of two capacitors in parallel is equal to the sum of each capacitance.

Capacitance of a Coaxial Transmission Line

- Recall the geometry of a coaxial transmission line:

Inner Conductor

- We earlier determined that if a potential difference of V_{0} volts is placed across the conductors, the surface charge density on the inner conductor is:

$$
\rho_{s a}(\bar{r})=\frac{\varepsilon V_{0}}{\ln [b / a]} \frac{1}{a} \quad \rho=a
$$

Capacitance of a Coaxial Transmission Line (contd.)

- The total charge Q on the inner conductor of a coax of length l is determined by integrating the surface charge density across the conductor surface:

$$
Q=\iint_{S_{+}} \rho_{s+}(\bar{r}) d s
$$

$$
Q=\int_{0}^{12 \pi} \int_{0}^{2 \pi} \frac{\varepsilon V_{0}}{\ln [b / a]} \frac{1}{a} \rho d \phi d z
$$

$$
Q=\left[\frac{\varepsilon V_{0}}{\ln [b / a]} \frac{1}{a} \rho\right]_{\rho=a} \int_{0}^{l} \int_{0}^{2 \pi} d \phi d z
$$

$$
Q=\frac{\varepsilon V_{0}}{\ln [b / a]} \frac{1}{a} \rho \int_{0}^{l} \int_{0}^{2 \pi} d \phi d z
$$

$$
\therefore Q=\frac{\varepsilon V_{0}}{\ln [b / a]} 2 \pi l
$$

Capacitance of a Coaxial Transmission Line (contd.)

- We can now determine the capacitance of this coaxial line!
- Since $C=Q / V$, and since the potential difference between the conductors is $V=V_{0}$, we find:

$$
C=\frac{Q}{V}=\left(\frac{\varepsilon V_{0}}{\ln [b / a]} 2 \pi l\right)\left(\frac{1}{V_{0}}\right) \quad C=\frac{2 \pi \varepsilon}{\ln [b / a]} l
$$

- This value represents the capacitance of a coaxial line of length l. A more useful expression is the capacitance of a coaxial line per unit length (e.g. farads/meter). We find this simply by dividing it by length l :

$$
\frac{C}{l}=\frac{2 \pi \varepsilon}{\ln [b / a]} \quad\left[\frac{\text { Farads }}{\text { metre }}\right]
$$

Capacitance of a Coaxial Transmission Line (contd.)

$$
C=\frac{2 \pi \varepsilon}{\ln [b / a]} l
$$

Note the longer the transmission line, the greater the capacitance!

This can cause great difficulty if the voltage across the transmission line conductors is time varying (as it almost certainly will be!).

For long transmission lines, engineers cannot consider a transmission line simply as a "wire" conductor that connects circuit elements together. Instead, capacitance (and inductance) make the transmission line itself a circuit element!

In this case, engineers must use transmission line theory to analyze circuits!

Energy Storage in Capacitors

- Recall in a parallel plate capacitor, a surface charge distribution $\rho_{S+}(\bar{r})$ is created on one conductor, while charge distribution $\rho_{s-}(\bar{r})$ is created on the other.

Q: How much energy is stored by these charges?

Energy Storage in Capacitors (contd.)

- We learned that the energy stored by a charge distribution is:

$$
W_{e}=\frac{1}{2} \iiint_{v} \rho_{v}(\bar{r}) V(\bar{r}) d v
$$

- The equivalent equation for surface charge distributions is:

$$
W_{e}=\frac{1}{2} \iint_{S} \rho_{s}(\bar{r}) V(\bar{r}) d S
$$

- For the parallel plate capacitor, we must integrate over both plates:

$$
W_{e}=\frac{1}{2} \iint_{S_{+}} \rho_{s+}(\bar{r}) V(\bar{r}) d S+\frac{1}{2} \iint_{S_{-}} \rho_{s-}(\bar{r}) V(\bar{r}) d S
$$

- But on the top plate (i.e., S_{+}), we know that: $\quad V(z=-d)=V_{0}$
- While on the bottom plate (i.e., S_): $V(z=0)=0$

Energy Storage in Capacitors (contd.)

- Therefore:

$$
W_{e}=\frac{V_{0}}{2} \iint_{S_{+}} \rho_{s+}(\bar{r}) d S+\frac{0}{2} \iint_{S_{-}} \rho_{s-}(\bar{r}) d S
$$

$$
W_{e}=\frac{V_{0}}{2} \iint_{S_{+}} \rho_{s+}(\bar{r}) d S
$$

- and V is the potential difference between the two conductors
- Combining these two equations, we find:

$$
W_{e}=\frac{1}{2} C V^{2}
$$

Energy Storage in Capacitors (contd.)

$$
W_{e}=\frac{1}{2} C V^{2}
$$

It shows that the energy stored within a capacitor is proportional to the product of its capacitance and the squared value of the voltage across the capacitor.

- Recall that we also can determine the stored energy from the fields within the dielectric:

$$
W_{e}=\frac{1}{2} \iiint_{v} \vec{D}(\bar{r}) \cdot \vec{E}(\bar{r}) d v
$$

$$
W_{e}=\frac{1}{2} \frac{\varepsilon V^{2}}{d^{2}}(\text { volume })
$$

- Here volume $=S d$, therefore:

$$
W_{e}=\frac{1}{2} \frac{\varepsilon S}{d} V^{2}
$$

$$
W_{e}=\frac{1}{2} C V^{2}
$$

Example

- A coaxial capacitor consists of two concentric, conducting, cylindrical surfaces, one of radius a and another of radius b. The insulating layer separating the two conducting surfaces is divided equally into two semicylindrical sections, one filled with dielectric ε_{1} and the other filled with dielectric ε_{2}.
(a) Develop an expression for C in terms of the length l and the given quantities.
(b) Evaluate the value of C for $a=2 \mathrm{~mm}$, $b=6 \mathrm{~mm}, \varepsilon_{\mathrm{r} 1}=2, \varepsilon_{\mathrm{r} 2}=4$, and $l=4 \mathrm{~cm}$.

Example (contd.)

(a) For the indicated voltage polarity, the electric field inside the capacitor exists in only the dielectric materials and points radially inward. Let \vec{E}_{1} be the field in dielectric ε_{1} and \vec{E}_{2} be the field in dielectric ε_{2}.
(b) At the interface between the two dielectric sections, \vec{E}_{1} is parallel to \vec{E}_{2} and both are tangential to the interface.
(c) Since boundary conditions require that the tangential components of \vec{E}_{1} and \vec{E}_{2} be the same, it follows that:

$$
\vec{E}_{1}=\vec{E}_{2}=-E \hat{a}_{\rho}
$$

- At $r=a$ (surface of inner conductor), in medium 1, the boundary condition on \vec{D}, leads to:

$$
\vec{D}_{1}=\varepsilon_{1} \vec{E}_{1}=\rho_{s 1} \hat{a}_{n} \quad \square \quad-\varepsilon_{1} E \hat{a}_{\rho}=\rho_{s 1} \hat{a}_{\rho}
$$

Example (contd.)

- Similarly, in medium 2: $\rho_{s 2}=-\varepsilon_{2} E$
- Thus, the electric fields will be the same in the two dielectrics, but the charge densities will be different along the two sides of the inner conducting cylinder.
- Since the same voltage applies for the two sections of the capacitor, we can treat them as two capacitors in parallel. For first half of the cylinder that includes dielectric ε_{1}, we can express:

$$
C_{1}=\frac{\pi \varepsilon_{1}}{\ln [b / a]} l \text { Only half cylinder }
$$

- Similarly:

$$
C_{2}=\frac{\pi \varepsilon_{2}}{\ln [b / a]} l
$$

Therefore:

$$
C=C_{1}+C_{2}=\frac{\pi l\left(\varepsilon_{1}+\varepsilon_{2}\right)}{\ln [b / a]}
$$

