

<u>Lecture – 19</u>

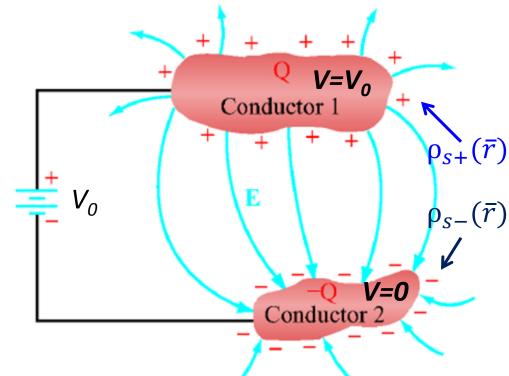
Date: 18.02.2014

- Capacitances
- Energy Storage in a Capacitor

Capacitance

- Any two conducting bodies, when separated by an insulating (dielectric) medium, regardless of their shapes and sizes form a capacitor.
- If a dc voltage is connected across them, the surfaces of conductors connected to the positive and negative source terminals will accumulate charges +Q and -Q respectively.
- If a conductor has excess charge, it distributes the charge on its surface in such a manner as to maintain a zero electric field everywhere within the conductor → to ensure that electric potential is same at every point in the conductor.

- Consider two conductors, with a potential difference of V volts.
- Since there is a potential difference between the conductors, there must be an **electric potential field** $V(\bar{r})$, and therefore an **electric field** $\vec{E}(\bar{r})$ in the region between the conductors.

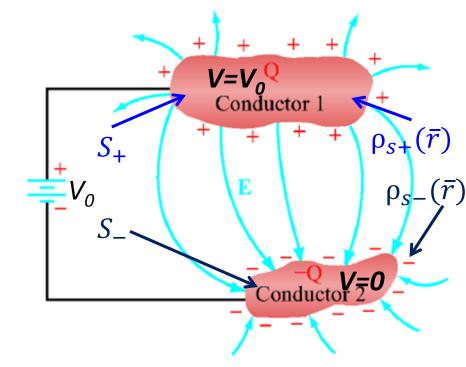


• Likewise, if there is an electric field, then we can specify an **electric flux density** $\vec{D}(\vec{r})$, which we can use to determine the **surface charge density** $\rho_s(\vec{r})$ on each of the conductors.

- We find that if the total net charge on **one** conductor is Q then the charge on the **other** will be equal to -Q.
- In other words, the total net charge on each conductor will be equal but opposite!
- Note that this does **not** mean that the surface charge densities on each conductor are equal (i.e., $\rho_{s+}(\bar{r}) \neq \rho_{s-}(\bar{r})$). Rather, it means that:

$$\bigoplus_{S_{+}} \rho_{s+}(\overline{r}) dS = - \bigoplus_{S_{-}} \rho_{s-}(\overline{r}) dS = Q$$

where surface S₊ is the surface
surrounding the conductor with the
positive charge (and the higher
electric potential), while the surface
S₋ surrounds the conductor with the
negative charge.



<u>Q</u>: How much free **charge** Q is there on each conductor, and how does this charge relate to the **voltage** V_0 ?

<u>A:</u> We can determine this from the mutual **capacitance** C of these conductors!

• The mutual **capacitance** between two conductors is **defined** as:

$$C = \frac{Q}{V} \qquad \left[\frac{Coulombs}{Volts} \equiv Farad\right]$$

where Q is the total charge on each conductor, and V is the potential difference between each conductor (for our example, $V = V_0$).

• Recall that the total charge on a conductor can be determined by **integrating** the surface charge density $\rho_s(\bar{r})$ across the **entire surface** S of a conductor:

$$Q = \bigoplus_{S_+} \rho_{s+}(\overline{r}) dS = - \bigoplus_{S_-} \rho_{s-}(\overline{r}) dS$$

• But recall also that the surface charge density on the surface of a conductor can be determined from the **electric flux density** $\vec{D}(\vec{r})$:

$$\rho_s(\overline{r}) = \overrightarrow{D}(\overline{r}).\hat{a}_n$$

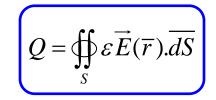
where \hat{a}_n is a unit vector **normal** to the conductor.

• **Combining** the two equations, we get:

$$Q = \bigoplus_{S_{+}} \overrightarrow{D}(\overrightarrow{r}) . \hat{a}_{n} dS = -\bigoplus_{S_{-}} \overrightarrow{D}(\overrightarrow{r}) . \hat{a}_{n} dS$$

$$P = \bigoplus_{S_{+}} \overrightarrow{D}(\overrightarrow{r}) . d\overrightarrow{S} = -\bigoplus_{S_{-}} \overrightarrow{D}(\overrightarrow{r}) . d\overrightarrow{S}$$
where we remember that $d\overrightarrow{S} = \hat{a}_{n} dS$.
Hey! This is **no surprise**! We **already** knew that:
$$Q = \bigoplus_{S} \overrightarrow{D}(\overrightarrow{r}) . d\overrightarrow{S}$$
This expression is also known as _____!!

• Note since $\vec{D}(\bar{r}) = \varepsilon \vec{E}(\bar{r})$ we can also say:



 The potential difference V between two conductors can likewise be determined as:

$$V = \int_{C} \vec{E}(\vec{r}) . \vec{dl}$$

where C is any contour that leads from one conductor to the other.

```
Q: Why any contour?
A:
```

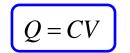
• We can therefore determine the **capacitance** between two conductors as:

$$Q = \bigoplus_{S} \varepsilon \vec{E}(\vec{r}).\overline{dS}$$
$$C = \frac{\int_{S} \varepsilon \vec{E}(\vec{r}).\overline{dl}}{V = \int_{C} \vec{E}(\vec{r}).\overline{dl}}$$
[Farad]

 Where the contour C must start at some point on surface S₊ and end at some point on surface S₋.

•
$$S_{+} = S_{-}$$

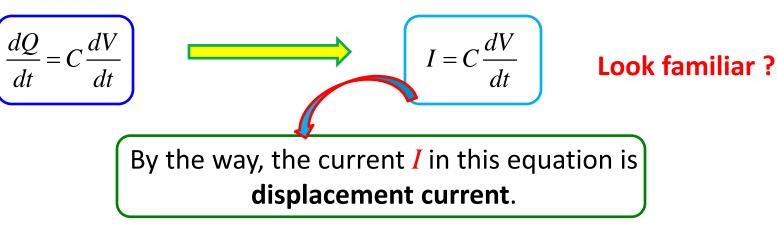
• Note this expression can be written as:



In other words, the charge **stored** by two conductors is equal to the product of their mutual capacitance and the potential difference between them.

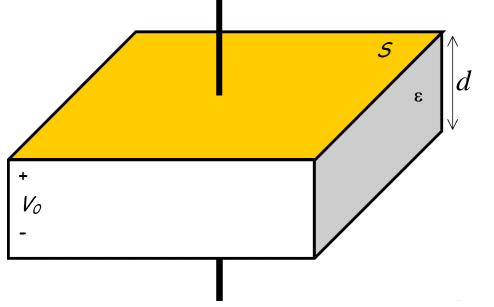
Therefore, the **greater** capacitance, the **greater** the amount of **charge** that is stored.

• Furthermore, try taking the **time derivative** of the above equation:



The Parallel Plate Capacitor

• Consider the geometry of a **parallel plate capacitor**:



Recall that we determined the fields and surface charge density of an **infinite** pair of parallel plates. We can use those results to approximate the fields and charge densities of this **finite** structure, where the **area** of each plate is *S*.

Where:

- V_0 = the **potential difference** between the plates
- S = surface area of each conducting plate
- *d* = **distance** between plates
- ε = **permittivity** of the dielectric between the plates

The Parallel Plate Capacitor (contd.)

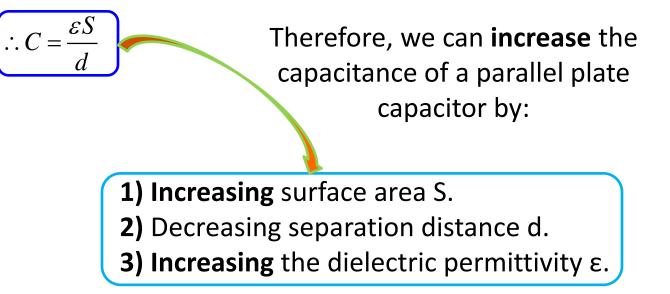
 For example, we determined that the surface charge density on the upper plate is:

$$\rho_{s+}(\overline{r}) = \frac{\varepsilon V_0}{d}$$

• The **total charge** on the upper plate is therefore:

• The **capacitance** of this structure is therefore:

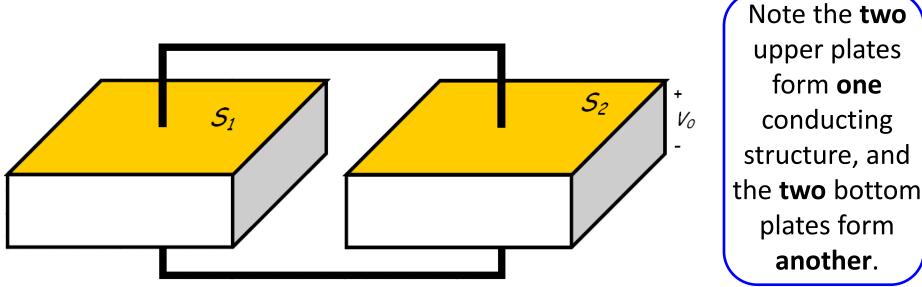
The Parallel Plate Capacitor (contd.)



Consider now the structure:

ECE230

The Parallel Plate Capacitor (contd.)



Q: What is the **capacitance** between these two conducting structures? A: The potential difference between them is V₀. The **total charge** on one

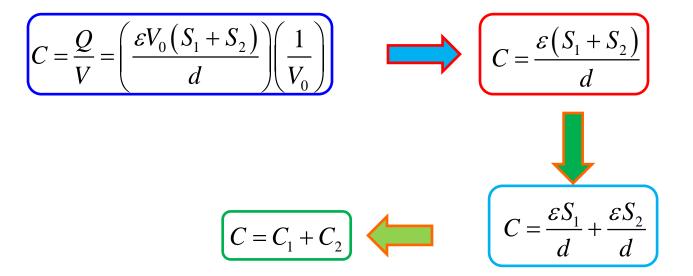
conducting structure is simply the **sum** of the charges on **each plate**:

$$Q = Q_1 + Q_2 = \frac{\varepsilon V_0 S_1}{d} + \frac{\varepsilon V_0 S_2}{d}$$

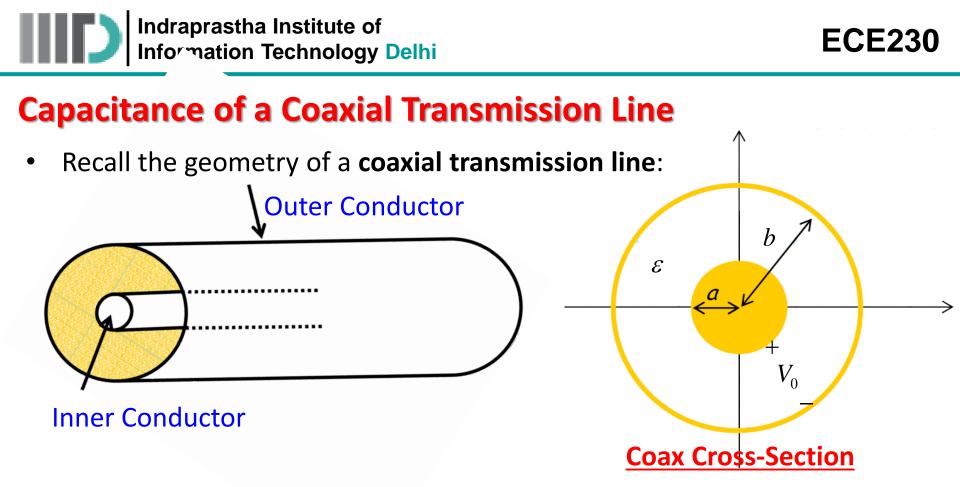
ECE230

The Parallel Plate Capacitor (contd.)

• Therefore, the **capacitance** of this structure is:



But **you** knew this! The total capacitance of two capacitors in **parallel** is equal to the **sum** of **each** capacitance.



• We earlier determined that if a **potential difference** of V_0 volts is placed across the conductors, the **surface charge density** on the **inner** conductor is:

$$\rho_{sa}(\overline{r}) = \frac{\varepsilon V_0}{\ln[b/a]} \frac{1}{a} \qquad \rho = a$$

Capacitance of a Coaxial Transmission Line (contd.)

 The total charge Q on the inner conductor of a coax of length l is determined by integrating the surface charge density across the conductor surface:

$$\therefore Q = \frac{\varepsilon V_0}{\ln[b/a]} 2\pi l$$

Capacitance of a Coaxial Transmission Line (contd.)

- We can now determine the **capacitance** of this coaxial line!
- Since C = Q/V, and since the **potential difference** between the conductors is $V = V_0$, we find:

This value represents the capacitance of a coaxial line of length *l*. A more useful expression is the capacitance of a coaxial line per unit length (e.g. farads/meter). We find this simply by dividing it by length *l*:

$$\frac{C}{l} = \frac{2\pi\varepsilon}{\ln[b/a]} \qquad \begin{bmatrix} Farads \\ metre \end{bmatrix}$$

Capacitance of a Coaxial Transmission Line (contd.)

$$C = \frac{2\pi\varepsilon}{\ln[b/a]}l$$

Note the **longer** the transmission line, the **greater** the capacitance!

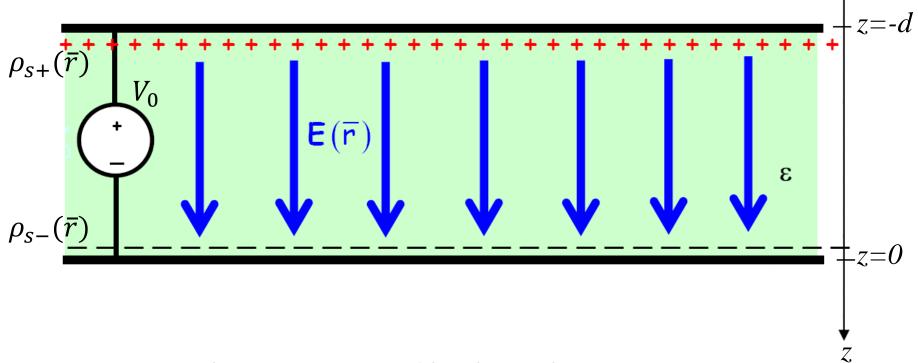
This can cause **great difficulty** if the voltage across the transmission line conductors is **time varying** (as it almost certainly will be!).

For **long** transmission lines, engineers cannot consider a transmission line simply as a "wire" conductor that connects circuit elements together. Instead, capacitance (and inductance) make the transmission line **itself** a <u>circuit element</u>!

In this case, engineers must use **transmission line theory** to analyze circuits!

Energy Storage in Capacitors

• Recall in a **parallel plate capacitor**, a surface charge distribution $\rho_{s+}(\bar{r})$ is created on **one** conductor, while charge distribution $\rho_{s-}(\bar{r})$ is created on the **other**.



Q: How much **energy** is stored by these charges?

Energy Storage in Capacitors (contd.)

• We learned that the energy **stored** by a **charge distribution** is:

$$W_e = \frac{1}{2} \iiint_{v} \rho_{v}(\overline{r}) V(\overline{r}) dv$$

• The **equivalent** equation for **surface** charge distributions is:

$$W_e = \frac{1}{2} \iint_{S} \rho_s(\overline{r}) V(\overline{r}) dS$$

• For the parallel plate capacitor, we must integrate over **both** plates:

$$W_e = \frac{1}{2} \iint_{S_+} \rho_{s+}(\overline{r}) V(\overline{r}) dS + \frac{1}{2} \iint_{S_-} \rho_{s-}(\overline{r}) V(\overline{r}) dS$$

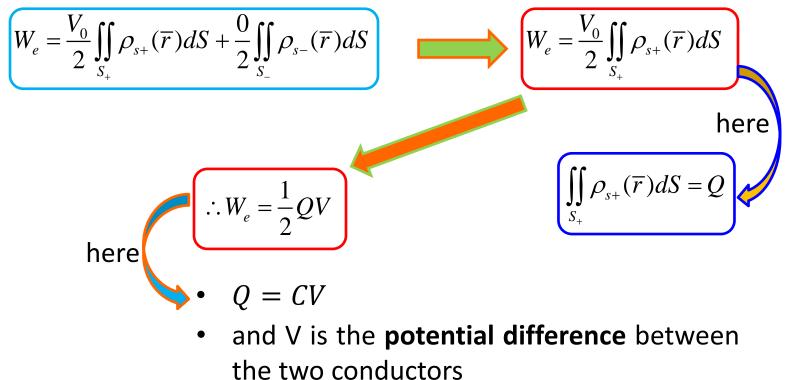
• But on the **top** plate (i.e., S_{+}), we know that:

$$V(z = -d) = V_0$$

• While on the **bottom** plate (i.e., $S_{\underline{}}$): V(z = 0) = 0

Energy Storage in Capacitors (contd.)

• Therefore:



• Combining these **two** equations, we find:

$$W_e = \frac{1}{2}CV^2$$

Energy Storage in Capacitors (contd.)

$$W_e = \frac{1}{2}CV^2$$

It shows that the **energy stored** within a capacitor is proportional to the product of its capacitance and the squared value of the voltage across the capacitor.

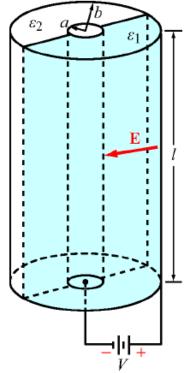
• Recall that we also can determine the stored energy from the **fields** within the dielectric:

$$W_{e} = \frac{1}{2} \iiint_{v} \vec{D}(\vec{r}).\vec{E}(\vec{r})dv \qquad \Longrightarrow \qquad W_{e} = \frac{1}{2} \frac{\varepsilon V^{2}}{d^{2}} (volume)$$

• Here *volume* = *Sd*, therefore:

Example

- A coaxial capacitor consists of two concentric, conducting, cylindrical surfaces, one of radius a and another of radius b. The insulating layer separating the two conducting surfaces is divided equally into two semi-cylindrical sections, one filled with dielectric ε_1 and the other filled with dielectric ε_2 .
 - (a) Develop an expression for C in terms of the length *l* and the given quantities.
 - (b) Evaluate the value of C for a = 2 mm, b = 6 mm, $\varepsilon_{r1} = 2$, $\varepsilon_{r2} = 4$, and l = 4 cm.



ECE230

Example (contd.)

- (a) For the indicated voltage polarity, the **electric field** inside the capacitor exists in only the dielectric materials and **points radially inward**. Let \vec{E}_1 be the field in dielectric $\boldsymbol{\varepsilon}_1$ and \vec{E}_2 be the field in dielectric $\boldsymbol{\varepsilon}_2$.
- (b) At the interface between the two dielectric sections, \vec{E}_1 is parallel to \vec{E}_2 and both are tangential to the interface.
- (c) Since boundary conditions require that the tangential components of \vec{E}_1 and \vec{E}_2 be the same, it follows that:

$$\vec{E}_1 = \vec{E}_2 = -E\hat{a}_{\rho}$$

• At r = a (surface of inner conductor), in medium 1, the boundary condition on \vec{D} , leads to:

Example (contd.)

• Similarly, in medium 2:

$$\rho_{s2} = -\varepsilon_2 E$$

- Thus, the electric fields will be the same in the two dielectrics, but the charge densities will be different along the two sides of the inner conducting cylinder.
- Since the same voltage applies for the two sections of the capacitor, we can treat them as two capacitors in parallel. For first half of the cylinder that includes dielectric ε₁, we can express:

Similarly:

$$C_{1} = \frac{\pi \varepsilon_{1}}{\ln[b/a]} l$$

$$C_{2} = \frac{\pi \varepsilon_{2}}{\ln[b/a]} l$$

$$C_{2} = \frac{\pi \varepsilon_{2}}{\ln[b/a]} l$$

$$C_{2} = \frac{\pi \varepsilon_{2}}{\ln[b/a]} l$$