
Indraprastha Institute of 

Information Technology Delhi ECE230 

 

Lecture – 19                                     Date: 18.02.2014 
 
• Capacitances 
• Energy Storage in a Capacitor 



Indraprastha Institute of 

Information Technology Delhi ECE230 

Capacitance 

• Any two conducting bodies, when separated by an insulating (dielectric) 
medium, regardless of their shapes and sizes form a capacitor.  

• If a dc voltage is connected across them, the surfaces of conductors 
connected to the positive and negative source terminals will accumulate 
charges +Q and –Q respectively. 

• If a conductor has excess charge, it distributes the charge on its surface in 
such a manner as to maintain a zero electric field everywhere within the 
conductor → to ensure that electric potential is same at every point in the 
conductor.  
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V0 

V=V0 

V=0 

Capacitance (contd.) 
• Consider two conductors, with a potential difference of V volts. 

• Since there is a potential 
difference between the 
conductors, there must be 
an electric potential field 
𝑉(𝑟 ) , and therefore an 

electric field 𝐸(𝑟 ) in the 
region between the 
conductors. 

• Likewise, if there is an electric field, then we can specify an electric flux 

density 𝐷 𝑟 , which we can use to determine the surface charge density 
𝜌𝑠(𝑟 ) on each of the conductors. 

ρ𝑠+(𝑟 ) 

ρ𝑠−(𝑟 ) 
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Capacitance (contd.) 

• We find that if the total net charge on one conductor is 𝑄 then the charge 
on the other will be equal to −𝑄. 

• In other words, the total net charge on each conductor will be equal but 
opposite! 

• Note that this does not mean that the surface charge densities on each 
conductor are equal (i.e., ρ𝑠+ 𝑟 ≠ ρ𝑠−(𝑟 )). Rather, it means that: 

( ) ( )s s

S S

r dS r dS Q 

 

    

where surface 𝑆+ is the surface 
surrounding the conductor with the 

positive charge (and the higher 
electric potential), while the surface 
𝑆− surrounds the conductor with the 

negative charge. 

ρ𝑠+(𝑟 ) 

ρ𝑠−(𝑟 ) 

𝑆+  

𝑆−  

V0 

V=V0 

V=0 
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Capacitance (contd.) 

Q: How much free charge 𝑄 is there on each conductor, and how does this 
charge relate to the voltage V0? 
A: We can determine this from the mutual capacitance C of these 
conductors! 

• The mutual capacitance between two conductors is defined as: 

Q
C

V


𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠

𝑉𝑜𝑙𝑡𝑠
≡ 𝐹𝑎𝑟𝑎𝑑  

where Q is the total charge on each conductor, and V is the potential 
difference between each conductor (for our example, V = V0). 

• Recall that the total charge on a conductor can be determined by 
integrating the surface charge density 𝜌𝑠(𝑟 ) across the entire surface S of 
a conductor: 

( ) ( )s s

S S

Q r dS r dS 

 

    
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Capacitance (contd.) 
• But recall also that the surface charge density on the surface of a 

conductor can be determined from the electric flux density 𝐷 𝑟 : 

ˆ( ) ( ).s nr D r a 

where 𝑎 𝑛 is a unit vector normal to the conductor. 

• Combining the two equations, we get: 

ˆ ˆ( ). ( ).n n

S S

Q D r a dS D r a dS

 

    ( ). ( ).
S S

Q D r dS D r dS

 

   

where we remember that 𝑑𝑆 = 𝑎 𝑛𝑑𝑆. 

• Hey! This is no surprise! We already knew that: ( ).
S

Q D r dS 

This expression is also known as________________!! 
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• Note since 𝐷 𝑟 = ε𝐸(𝑟 ) we can also say: 

Capacitance (contd.) 

( ).
S

Q E r dS 

• The potential difference V between two conductors can likewise be 
determined as: 

( ).
C

V E r dl 

where C is any contour that leads from one conductor to the other. 

Q: Why any contour? 
A: 

• We can therefore determine the capacitance between two conductors as: 

( ).

( ).

S

C

Q E r dS

C
V E r dl









𝐹𝑎𝑟𝑎𝑑  

• Where the contour C must start at 
some point on surface S+ and end 
at some point on surface S-. 

• 𝑆+ = 𝑆− 
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Capacitance (contd.) 

• Note this expression can be written as: Q CV

In other words, the charge stored by two conductors 
is equal to the product of their mutual capacitance 

and the potential difference between them. 

Therefore, the greater capacitance, the greater 
the amount of charge that is stored. 

• Furthermore, try taking the time derivative of the above equation: 

dQ dV
C

dt dt


dV
I C

dt
 Look familiar ? 

By the way, the current I in this equation is 
displacement current. 
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• Consider the geometry of a parallel plate capacitor: 

The Parallel Plate Capacitor 

Where: 
𝑉0 = the potential difference between the plates 
S = surface area of each conducting plate 
d = distance between plates 
ε = permittivity of the dielectric between the plates 

d 

Recall that we determined 
the fields and surface charge 
density of an infinite pair of 
parallel plates. We can use 

those results to approximate 
the fields and charge 
densities of this finite 

structure, where the area of 
each plate is S. 
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The Parallel Plate Capacitor (contd.) 

• For example, we determined that the surface charge density on the 
upper plate is: 

0( )s

V
r

d


  

• The total charge on the upper plate is therefore: 

( )s

S

Q r ds



  0

S

V
Q ds

d





 
0

S

V
Q ds

d





 
0V S

Q
d




• The capacitance of this structure is therefore: 

Q
C

V
 0

0

1V S
C

d V

   
   
  

S
C

d


 
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The Parallel Plate Capacitor (contd.) 

S
C

d


 

1) Increasing surface area S. 
2) Decreasing separation distance d. 
3) Increasing the dielectric permittivity ε. 

Therefore, we can increase the 
capacitance of a parallel plate 

capacitor by: 
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The Parallel Plate Capacitor (contd.) 

• Consider now the structure: 
Note the two 
upper plates 

form one 
conducting 

structure, and 
the two bottom 

plates form 
another. 

Q: What is the capacitance between these two conducting structures? 

A: The potential difference between them is V0. The total charge on one 
conducting structure is simply the sum of the charges on each plate: 

0 1 0 2
1 2

V S V S
Q Q Q

d d

 
   
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The Parallel Plate Capacitor (contd.) 

• Therefore, the capacitance of this structure is: 

 0 1 2

0

1V S SQ
C

V d V

   
    

  

 1 2S S
C

d

 


1 2S S
C

d d

 
 

1 2C C C 

But you knew this! The total capacitance of 
two capacitors in parallel is equal to the sum 

of each capacitance. 
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b


Coax Cross-Section 

0V




Capacitance of a Coaxial Transmission Line 

• Recall the geometry of a coaxial transmission line: 

Outer Conductor 

Inner Conductor 

• We earlier determined that if a potential difference of V0 volts is placed 
across the conductors, the surface charge density on the inner conductor 
is: 

 
0 1

( )
ln /

sa

V
r

b a a


  ρ = 𝑎 
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Capacitance of a Coaxial Transmission Line (contd.) 

• The total charge 𝑄 on the inner conductor of a coax of length l is 
determined by integrating the surface charge density across the 
conductor surface: 

( )s

S

Q r ds



   

2

0

0 0

1

ln /

l
V

Q d dz
b a a




   

 

2

0

0 0

1

ln /

l
V

Q d dz
b a a




   
 

2

0

0 0

1

ln /

l

a

V
Q d dz

b a a






 



 
  
 

 

 
0 2

ln /

V
Q l

b a


 
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Capacitance of a Coaxial Transmission Line (contd.) 

• We can now determine the capacitance of this coaxial line! 
• Since 𝐶 = 𝑄/𝑉 , and since the potential difference between the 

conductors is 𝑉 = 𝑉0, we find: 

 
0

0

1
2

ln /

Q V
C l

V b a V




  
     

    
2

ln /
C l

b a




• This value represents the capacitance of a coaxial line of length l. A more 
useful expression is the capacitance of a coaxial line per unit length (e.g. 
farads/meter). We find this simply by dividing it by length l: 

 
2

ln /

C

l b a




𝐹𝑎𝑟𝑎𝑑𝑠

𝑚𝑒𝑡𝑟𝑒
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Capacitance of a Coaxial Transmission Line (contd.) 

 
2

ln /
C l

b a




Note the longer the transmission line, 
the greater the capacitance! 

This can cause great difficulty if the voltage across the transmission 
line conductors is time varying (as it almost certainly will be!). 

For long transmission lines, engineers cannot consider a transmission line 
simply as a “wire” conductor that connects circuit elements together. 

Instead,  capacitance (and inductance) make the transmission line itself a 
circuit element! 

In this case, engineers must use transmission line theory to analyze circuits! 
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z 

z=0 

z=-d 

𝜌𝑠−(𝑟 ) 

𝜌𝑠+(𝑟 )  
𝑉0 

Energy Storage in Capacitors 

• Recall in a parallel plate capacitor, a surface charge distribution 𝜌𝑠+(𝑟 ) is 
created on one conductor, while charge distribution 𝜌𝑠−(𝑟 ) is created on 
the other. 

Q: How much energy is stored by these charges? 
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Energy Storage in Capacitors (contd.) 

• We learned that the energy stored by a charge distribution is: 

1
( ) ( )

2
e v

v

W r V r dv 

• The equivalent equation for surface charge distributions is: 

1
( ) ( )

2
e s

S

W r V r dS 

• For the parallel plate capacitor, we must integrate over both plates: 

1 1
( ) ( ) ( ) ( )

2 2
e s s

S S

W r V r dS r V r dS 

 

   

• But on the top plate (i.e., S+), we know that: 𝑉 𝑧 = −𝑑 = 𝑉0 

• While on the bottom plate (i.e., S-): 𝑉 𝑧 = 0 = 0 
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Energy Storage in Capacitors (contd.) 

• Therefore: 

0 0
( ) ( )

2 2
e s s

S S

V
W r dS r dS 

 

   
0 ( )

2
e s

S

V
W r dS



 

( )s

S

r dS Q



 

here 

1

2
eW QV 

here 

• 𝑄 = 𝐶𝑉 

• and V is the potential difference between 
the two conductors 

• Combining these two equations, we find: 21

2
eW CV
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Energy Storage in Capacitors (contd.) 

21

2
eW CV

It shows that the energy stored within a capacitor is 
proportional to the product of its capacitance and the 

squared value of the voltage across the capacitor. 

• Recall that we also can determine the stored energy from the fields within 
the dielectric: 

 
2

2

1

2
e

V
W volume

d




1
( ). ( )

2
e

v

W D r E r dv 

• Here 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑆𝑑, therefore: 21

2
e

S
W V

d




21

2
eW CV
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• A coaxial capacitor consists of two concentric, conducting, cylindrical 
surfaces, one of radius a and another of radius b. The insulating layer 
separating the two conducting surfaces is divided equally into two semi-
cylindrical sections, one filled with dielectric ε1 and the other filled with 
dielectric ε2. 

Example 

(a) Develop an expression for C in terms 
of the length l and the given 
quantities. 

(b) Evaluate the value of C for a = 2 mm, 
b = 6 mm, εr1 = 2, εr2 = 4, and l = 4 cm. 
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Example (contd.) 

(a) For the indicated voltage polarity, the electric field inside the capacitor 

exists in only the dielectric materials and points radially inward. Let 𝐸1 

be the field in dielectric ε1 and 𝐸2 
be the field in dielectric ε2.  

(b) At the interface between the two dielectric sections, 𝐸1 is parallel to 𝐸2 
 

and both are tangential to the interface.  

(c) Since boundary conditions require that the tangential components of 𝐸1 

and 𝐸2 be the same, it follows that: 

1 2 ˆE E Ea  

• At r = a (surface of inner conductor), in medium 1, the boundary 

condition on 𝐷, leads to: 

1 11 1
ˆ

s nD E a   1 1
ˆ ˆ

sEa a   
1 1s E  



Indraprastha Institute of 

Information Technology Delhi ECE230 

Example (contd.) 

• Similarly, in medium 2: 2 2s E  

• Thus, the electric fields will be the same in the two dielectrics, but the 
charge densities will be different along the two sides of the inner 
conducting cylinder. 

• Since the same voltage applies for the two sections of the capacitor, we 
can treat them as two capacitors in parallel. For first half of the cylinder 
that includes dielectric ε1, we can express: 

 
1

1
ln /

C l
b a


 Only half cylinder 

• Similarly: 

 
2

2
ln /

C l
b a




Therefore: 

 
 

1 2

1 2
ln /

l
C C C

b a

  
  


