Fields and Waves

Tutorial-7 ($8^{\text {th }}$ Match, 2016)

Q1. A sphere of radius R carries a polarization

$$
\mathbf{P}(\mathbf{r})=k r
$$

where k is a constant and r is the vector from the center.
a) Calculate the bound charges $\rho_{\text {sp }}$ and ρ_{vp}.
b) Find the field inside and outside the sphere.

Q2. Figure 1 shows three dielectric slabs stacked one upon another. They have equal thickness but different dielectric constants. If \mathbf{E}_{0} in air makes an angle of 45° with respect to the z-axis, find the angle of \mathbf{E} in each of the other layers.

Figure 1

Q3. A 2 cm dielectric sphere with $\varepsilon_{1 \mathrm{r}}=3$ is embedded in a medium with $\varepsilon_{2 \mathrm{r}}=9$. If $\mathbf{E}_{\mathbf{2}}=3 \cos \theta \mathbf{r}-$ $3 \sin \theta \boldsymbol{\theta}(\mathrm{~V} / \mathrm{m})$ in the surrounding region, Find \mathbf{E}_{1} and $\mathbf{D}_{\mathbf{1}}$ in the sphere.

Home Assignment to be submitted and discussed during tutorial session.

Q1. The space between the plates of a parallel-plate capacitor (see Figure 2) is filled with two slabs of linear dielectric material. Each slab has thickness s, so that the total distance between the plates is 2 s . Slab 1 has a relative dielectric constant of 2 , and slab 2 has a relative dielectric constant of 1.5 . The free charge density on the top plate is σ and on the bottom plate is $-\sigma$.
a) Find the electric displacement D in each slab.
b) Find the electric field E in each slab.
c) Find the polarization P in each slab.
d) Find the potential difference between the plates

Figure 2

Q2. An infinitely long dielectric cylinder (no free charge on the surface) with $\varepsilon_{1 r}=10$ is described by $r \leq 20 \mathrm{~cm}$ and is surrounded by a material with $\varepsilon_{1 r}=4$. If $E_{1}=r^{2} \sin \phi r+3 r^{2} \cos \phi \boldsymbol{\phi}$ $+3 \mathbf{z}(V / m)$ in the cylinder, find $\mathbf{E}_{\mathbf{2}}$ and $\mathbf{D}_{\mathbf{2}}$ in the surrounding region.

