Fields and Waves
 Tutorial-6 19th February, 2016

Ques 1: Given the potential $V=\frac{10}{r^{2}} \sin \theta \cos \emptyset$,
(a) Find the electric flux density \vec{D} at $(2, \pi / 2,0)$
(b) Calculate the work done in moving at $10 \mu C$ charge from point $\mathrm{A}\left(1,30^{\circ}, 120^{\circ}\right)$ to $\mathrm{B}\left(4,90^{\circ}, 60^{\circ}\right)$

Ques2: A spherically symmetric charge distribution is given by

$$
\rho_{v}= \begin{cases}\rho_{o}\left(1-\frac{r}{a}\right)^{2} & r \leq a \\ 0 & r \geq a\end{cases}
$$

(a) Find \vec{E} and V for $r \geq a$
(b) Find \vec{E} and V for $r \leq a$
(c) Find the total charge

Ques3: If $\vec{J}=\frac{1}{r^{3}}\left(2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right)^{A} / m^{2}$, calculate the current passing through
(a) A hemispherical shell of radius $20 \mathrm{~cm}, 0<\theta<\pi / 2,0<\emptyset<2 \pi$
(b) A spherical shell of radius 10 cm

Home Assignment to be submitted and discussed during tutorial session.

Ques1: A positive point charge Q is at the center of a spherical conducting shell of an inner radius Ri and an outer radius Ro. Determine \vec{E} and V as a function of R.

Ques2: Find the work done in moving a charge of $10 \mu \mathrm{C}$ along an incremental 1 mm long path from $(1,2,-1)$ to $(2,2,-1)$ in a field given by

$$
\vec{E}=(2 y+1) \hat{a}_{x}+2 x \hat{a}_{y}+2 \hat{a}_{z}
$$

At the point (1, 2, -1)

