Fields and Waves

Tutorial-4 9th Feb, 2016

Ques1: Verify the divergence theorem for $\vec{D}=\frac{10 x^{3}}{3} \hat{a}_{x}$ C/sq. m for the volume of a cube, 2 m on an edge, centered at the origin and with edges parallel to the axis.

Ques2: Determine the divergence and curl of the given vector fields and evaluate them at specified points.

$$
\vec{D}=\rho z \sin \emptyset \hat{a}_{\rho}+3 \rho z^{2} \cos \emptyset \hat{a}_{\emptyset} \quad \text { At }(5, \pi / 2,1)
$$

Ques3: If $\vec{D}=\rho \cos \emptyset \hat{a}_{\rho}+\sin \emptyset \hat{a}_{\emptyset}$ evaluate $\oint \vec{D} \cdot \overrightarrow{d l}$ around the path shown below:

Home Assignment to be submitted and discussed during tutorial session.

Ques1 Let $\vec{D}=2 \rho z \hat{a}_{\rho}+3 z \sin \emptyset \hat{a}_{\emptyset}-4 \rho \cos \emptyset \hat{a}_{z}$. Verify Stokes's theorem for then open surface $\mathrm{z}=1,0<\rho<2,0<\emptyset<45^{\circ}$.

Ques2: If $\vec{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}$ and $\vec{T}=2 z y \hat{a}_{x}+x y^{2} \hat{a}_{y}+x^{2} y z \hat{a}_{z}$. Determine
(a) $(\vec{\nabla} \cdot \vec{r}) \vec{T}$
(b) $(\vec{r} . \vec{\nabla}) \vec{T}$
(c) $\vec{\nabla} \cdot \vec{r}(\vec{r} \cdot \vec{T})$

