<u>Fields and Waves</u> <u>Tutorial-03 (February 2, 2016)</u>

1. A 6-m section of $150-\Omega$ lossless line is driven by a source with

 $v_s(t) = 5\cos(8\pi \times 10^7 t - 30^\circ)$ (V)

and $Z_s = 150 \Omega$. If the line, which has a relative permittivity $\varepsilon r = 2.25$, is terminated in a load $Z_L = (150 - i50) \Omega$, determine:

(a) Electrical length of the line.

(b) The reflection coefficient at the load.

(c) The input impedance.

(d) The input voltage $\tilde{V}_{i\cdot}$

(e) The time-domain input voltage $v_i(t)$.

- 2. A lossless transmission line of electrical length I = 0.35λ and characteristic impedance of 100Ω is terminated in a load impedance of (60+ j30) Ω . Find Γ , S, and Z_{in}.
- 3. A 50- Ω lossless line terminated in a purely resistive load has a voltage standing-wave ratio of 3. Find all possible values of Z_L.
- 4. Convert:
 - a) (-1, 1, v_2) from Cartesian to spherical.
 - b) $(1/2, (\sqrt{3})/2, 5)$ from Cartesian to cylindrical
 - c) (v6, $\pi/4$, v2) from cylindrical to spherical.

Home Assignment Questions:

(To be submitted at the start of the tutorial and be subsequently discussed)

- 1. A 50- Ω lossless transmission line is terminated in a load with impedance ZL = (30– j50) Ω . The wavelength is 8 cm. Find:
 - a) The reflection coefficient at the load
 - b) The standing-wave ratio on the line
 - c) The position of the voltage maximum nearest the load
 - d) The position of the current maximum nearest the load.
- Express in the Cartesian coordinate system and mention what geometric shape/surface they signify (eg: if in Cartesian: z²/a+y²/b=0- an ellipse with semi major/minor axis = a/b at a height of x=c):
 - a) r=3
 - b) ρ=5; z=10