Fields and Waves
 Tutorial-3 2 ${ }^{\text {nd }}$ February, 2016

Ques1: A lossless transmission line having $Z_{0}=120 \Omega$ is operating at $\omega=5 \times 10^{8} \mathrm{rad} / \mathrm{s}$. If the velocity on the line is $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$, find: (a) L (b) C (c) let Z_{L} be represented by an inductance of $0.6 \mu \mathrm{H}$ in series with a 100Ω resistance. Find the reflection coefficient and Voltage Standing Wave Ratio.

Ques2: Express the unit vector which points from $\mathrm{z}=\mathrm{h}$ on the z -axis towards $(r, \emptyset, 0)$ in the cylindrical coordinate system.

Ques3: Convert point $\mathrm{P}(1,3,5), \mathrm{T}(0,-4,3)$ from Cartesian to cylindrical and spherical coordinate system.

Ques4: A lossless transmission line having $Z_{0}=75 \Omega$ is operating at frequency of 150 MHz . The line is terminated in an unknown load impedance ZL. VSWR is measured to be 3 . The nearest minima from the load is found to be at 20 cm . Calculate ZL.

Home Assignment to be submitted and discussed during tutorial session.

Ques1: Given Vectors $\overrightarrow{\boldsymbol{A}}=\mathbf{2} \widehat{\boldsymbol{a}}_{\boldsymbol{x}}+\mathbf{4} \widehat{\boldsymbol{a}}_{\boldsymbol{y}}+\mathbf{1 0} \widehat{\boldsymbol{a}}_{z}$ and $\overrightarrow{\boldsymbol{B}}=\mathbf{- 5} \widehat{\boldsymbol{a}}_{\boldsymbol{\rho}}+\widehat{\boldsymbol{a}}_{\emptyset}-\mathbf{3} \widehat{\boldsymbol{a}}_{z}$. Find
(a) $A+B$ at $P(0,2,-5)$
(b) The angle between $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ at P
(c) Scalar component of $\overrightarrow{\boldsymbol{A}}$ along $\overrightarrow{\boldsymbol{B}}$ at P

Ques2: If $\vec{A}=\mathbf{5} \widehat{a}_{\rho}+\mathbf{2} \widehat{\boldsymbol{a}}_{\emptyset}-\widehat{\boldsymbol{a}}_{\mathbf{z}}$ and $\overrightarrow{\boldsymbol{B}}=\widehat{\boldsymbol{a}}_{\rho}-\mathbf{3} \widehat{\boldsymbol{a}}_{\emptyset}+\mathbf{4} \widehat{\boldsymbol{a}}_{\boldsymbol{z}}$. Find
(a) $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}$
(b) $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$
(c) Angle between $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$
(d) Unit normal vector normal to plane containing both $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$
(e) Vector projection of $\overrightarrow{\boldsymbol{A}}$ onto $\overrightarrow{\boldsymbol{B}}$

