Fields and Waves

Tutorial-1 12 ${ }^{\text {th }}$ January, 2016
1.Assume that \mathbf{r} is the position vector of the point $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and \mathbf{A} is a constant vector. Then define the equations for the following
(a) $(\mathbf{r}-\mathbf{A}) \cdot \mathbf{A}=\mathbf{0}$
(b) $(\mathbf{r}-\mathbf{A}) \cdot \mathbf{r}=\mathbf{0}$
2. $\boldsymbol{A}=\boldsymbol{\operatorname { c o s }}\left(\mathbf{1 0}^{8} \boldsymbol{t}-\mathbf{1 0} \boldsymbol{x}+\mathbf{6 0}^{\mathbf{0}}\right) \mathrm{a}_{\mathrm{z}}$ and $\boldsymbol{B}=\frac{\mathbf{2 0}}{\boldsymbol{j} \boldsymbol{a}_{\boldsymbol{x}}}+\mathbf{1 0} \boldsymbol{e}^{j \frac{2 \pi x}{3}} \boldsymbol{a}_{\boldsymbol{y}}$. Express A in phasor form and B in instantaneous form.
3. $A=-25 \sin \left(4.71 X 10^{8} t+1.57 x\right), B=-50 \cos \left(-9.42 X 10^{8} t+3.14 x\right)$.

Find the direction of propagation of the waves, wavelength, speed, frequency, wave number for both A and B waves

Home Assignment to be submitted and discussed during tutorial session.

1. For the circuit shown in Fig. $\mathbf{1} \mathbf{R}=\mathbf{4 0 0 h m s}, \mathbf{C}=\mathbf{1 5 0 u f}$ and it is driven by periodic pulse $\mathbf{V}(\mathbf{t})$ alternating between 15 V to 0 V with $\mathrm{T}=0.3 \mathrm{sec}$. Voltage across capacitor is $\mathbf{V e}(\mathbf{t})$ and resistor is $\mathrm{Vr}(\mathrm{t})$.
a) Find $V c(t)$ and the current $I(t)$ flowing in the circuit for $0<t<T$.
b) Sketch $\operatorname{Vc}(t)$ and $\operatorname{Vr}(t)$ for $0<t<2 T$.

Figure 1

