Fields and Waves Tutorial-10 5thApril, 2016

Ques1: Consider the loop given below. If $\vec{B} = 0.5\hat{a}_z \frac{Wb}{m^2}$, $R = 20\Omega$, w = 10cm and the rod is moving with a constant velocity of $8\hat{a}_z$

Ques2: What values of A and B are required if the two fields $\vec{E} = 120\Pi \cos(10^6\Pi t - \beta x) \hat{a}_y$ V/m and $\vec{H} = A \cos(10^6\Pi t - \beta x) \hat{a}_z$ A/m satisfy Maxwell's equations in linear, isotropic homogeneous medium where $\varepsilon_r = \mu_r = 4$ and $\alpha = 0$

Ques3: For a uniform plane wave in fresh lake water $\sigma = 10^{-3} \frac{mhos}{m}$, $\varepsilon_r = 80$, $\mu = \mu_o$. Calculate α, β, η and λ for two frequencies 100MHz and 10 KHz.

Home Assignment to be submitted and discussed during tutorial session.

Ques1: In a material for which $\sigma = 5 \frac{mhos}{m}$ and, $\varepsilon_r = 1$, the electric field intensity is $\vec{E} = 250 \sin(10^{10} t)$ V/m. Calculate the conduction current and conduction current densities and the frequency at which they have equal magnitude.

Ques2: A plane wave propagating through a medium with ε_r = 8, μ_r = 2 has
\$\vec{E} = e^{-z/3} sin(10^8 t - βz) \hfiarlow a_x\$ V/m. Determine
a) \$\beta\$
b) Wave velocity
c) Loss tangent

- d) \vec{H}
- e) Intrinsic Impedance