## Fields and Waves <br> Tutorial-10 5thApril, 2016

Ques1: Consider the loop given below. If $\vec{B}=0.5 \hat{a}_{z} \frac{W b}{m^{2}}, R=20 \Omega, w=10 \mathrm{~cm}$ and the rod is moving with a constant velocity of $8 \hat{a}_{z}$


Ques2: What values of A and B are required if the two fields $\vec{E}=120 \Pi \cos \left(10^{6} \Pi t-\beta x\right) \hat{a}_{y} \mathrm{~V} / \mathrm{m}$ and $\vec{H}=A \cos \left(10^{6} \Pi t-\beta x\right) \hat{a}_{z} \mathrm{~A} / \mathrm{m}$ satisfy Maxwell's equations in linear, isotropic homogeneous medium where $\varepsilon_{r}=\mu_{r}=4$ and $\alpha=0$

Ques3: For a uniform plane wave in fresh lake water $\sigma=10^{-3} \frac{\mathrm{mhos}}{\mathrm{m}}, \varepsilon_{r}=80, \mu=\mu_{o}$. Calculate $\alpha, \beta, \eta$ and $\lambda$ for two frequencies 100 MHz and 10 KHz .

## Home Assignment to be submitted and discussed during tutorial session.

Ques1: In a material for which $\sigma=5 \frac{m h o s}{m}$ and, $\varepsilon_{r}=1$, the electric field intensity is $\vec{E}=250 \sin \left(10^{10} t\right) \mathrm{V} / \mathrm{m}$. Calculate the conduction current and conduction current densities and the frequency at which they have equal magnitude.

Ques2: A plane wave propagating through a medium with $\varepsilon_{r}=8, \mu_{r}=2$ has $\vec{E}=e^{-z / 3} \sin \left(10^{8} t-\beta z\right) \hat{a}_{x} \quad \mathrm{~V} / \mathrm{m}$. Determine
a) $\beta$
b) Wave velocity
c) Loss tangent
d) $\vec{H}$
e) Intrinsic Impedance

