Lecture - 9

Date: 01.02.2016

- Contours (Cartesian, Cylindrical, and Spherical)
- Surfaces (Cartesian, Cylindrical, and Spherical)
- Volume
- Gradient, Divergence, and Curl

The Contour C

Mathematically, a contour is described by:
2 equalities (e.g., $x=2, y=-4 ; r=3, \phi=\pi / 4$) AND
1 inequality (e.g., $-1<z<5 ; 0<\theta<\pi / 2$)

- Likewise, we need to explicitly determine the differential displacement vector $\overline{d l}$ for each contour.

Recall we have studied seven coordinate parameters ($x, y, z, \rho, \phi, r, \theta$). As a result, we can form seven different contours C !

Cartesian Contours

- Say we move a point from $P(x=1, y=2, z=-3)$ to $P(x=1, y=2, z=3)$ by changing only the coordinate variable z from $z=-3$ to $z=3$. In other words, the coordinate values x and y remain constant at $x=1$ and $y=2$.
- We form a contour that is a line segment, parallel to the z-axis!

Note that every point along this segment has coordinate values $x=1$ and $y=2$. As we move along the contour, the only coordinate value that changes is z.

Cartesian Contours (contd.)

- Therefore, the differential directed distance associated with a change in position from z to $z+d z$, is $\overline{d l}=\overline{d z}=\hat{a}_{z} \mathrm{dz}$

Similarly, a line segment parallel to the x-axis (or y-axis) can be formed by changing coordinate parameter x (or y), with a resulting differential displacement vector of $\overline{d l}=\overline{d x}=\hat{a}_{x} \mathrm{dx}$ (or $\overline{d l}=\overline{d y}=\hat{a}_{y} \mathrm{dy}$).

Cylindrical Contours

- Say we move a point from $\mathrm{P}\left(\rho=1, \phi=45^{\circ}, \mathrm{z}=2\right)$ to $\mathrm{P}\left(\rho=3, \phi=45^{\circ}, \mathrm{z}=2\right)$ by changing only the coordinate variable ρ from $\rho=1$ to $\rho=3$. In other words, the coordinate values ϕ and z remain constant at $\phi=45^{\circ}$ and $z=2$.
- We form a contour that is a line segment, parallel to the $x-y$ plane (i.e., perpendicular to the z-axis).

Cylindrical Contours (contd.)

- Alternatively, say we move a point from $\mathrm{P}\left(\rho=3, \phi=0^{\circ}, \mathrm{z}=2\right)$ to $\mathrm{P}(\rho=3, \phi=$ $90^{\circ}, z=2$) by changing only the coordinate variable ϕ from $\phi=0^{\circ}$ to $\phi=$ 90°. In other words, the coordinate values ρ and z remain constant at $\rho=3$ and $z=2$. We form a contour that is a circular arc, parallel to the $x-y$ plane.

Cylindrical Contours (contd.)

The three cylindrical contours are therefore described as:

1. Line segment parallel to the z-axis

$$
\rho=c_{\rho} \quad \phi=c_{\phi} \quad c_{z 1} \leq z \leq c_{z 2} \quad \square \quad \overline{d l}=\hat{a}_{z} d z
$$

2. Circular arc parallel to the xy-plane

$$
\rho=c_{\rho} \quad z=c_{z} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad \square \quad \overline{d l}=\hat{a}_{\phi} \rho d \phi
$$

3. Line segment parallel to the xy plane

$$
\phi=c_{\phi} \quad z=c_{z} \quad c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad \square \quad \overline{d l}=\hat{a}_{\rho} d \rho
$$

Example

Find an expression for the unit vector of \vec{A} shown in the following Figure in cylindrical coordinates.

Spherical Contours

- Say we move a point from $P\left(r=0, \theta=60^{\circ}, \phi=45^{\circ}\right)$ to $P\left(r=3, \theta=60^{\circ}, \phi=\right.$ 45°) by changing only the coordinate variable r from $r=0$ to $r=3$. In other words, the coordinate values θ and ϕ remain constant at $\theta=60^{\circ}$ and $\phi=$ 45°.
- We form a contour that is a line segment, emerging from the origin.

Spherical Contours (contd.)

- Alternatively, say we move a point from $\mathrm{P}\left(\mathrm{r}=3, \theta=0^{\circ}, \phi=45^{\circ}\right)$ to $\mathrm{P}(\mathrm{r}=3$, $\theta=90^{\circ}, \phi=45^{\circ}$) by changing only the coordinate variable θ from $\theta=0^{\circ}$ to $\theta=90^{\circ}$. In other words, the coordinate values r and ϕ remain constant at $r=3$ and $\phi=45^{\circ}$

We form a circular arc, whose plane includes the z -axis.

Every point along the arc has coordinate values $r=3$ and $\phi=45^{\circ}$. As we move along the contour, the only coordinate value that changes is θ.

Therefore, the differential directed distance associated with a change in position from θ to $\theta+\mathrm{d} \theta$, is $\overline{d l}=\overline{d \theta}=\hat{a}_{\theta} r d \theta$

Spherical Contours (contd.)

- Finally, we could fix coordinates r and θ and vary coordinate ϕ only—but we already did this in cylindrical coordinates! We again find that a circular arc is generated, an arc that is parallel to the $x-y$ plane.

The three spherical contours are therefore:

1. Circular arc parallel to the xy-plane

$$
r=c_{r} \quad \theta=c_{\theta} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

$$
\longmapsto \overline{\overline{d l}}=\hat{a}_{\phi} r \sin \theta d \phi
$$

2. Circular arc in a plane that includes z -axis

$$
r=c_{r} \quad \phi=c_{\phi} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2}
$$

$$
\overline{d l}=\hat{a}_{\theta} r d \theta
$$

3. Line segment directed towards the origin

$$
\theta=c_{\theta} \quad \phi=c_{\phi} \quad c_{r 1} \leq r \leq c_{r 2}
$$

$$
\overline{\overline{d l}}=\hat{a}_{r} d r
$$

The Surface S

- Although \mathbf{S} represents any surface, no matter how complex or convoluted, we will study only basic surfaces. In other words, $\overline{d s}$ will correspond to one of the differential surface vectors from Cartesian, cylindrical, or spherical coordinate systems.
- In this class, we will limit ourselves to studying only those surfaces that are formed when we change the location of a point by varying two coordinate parameters. In other words, the other coordinate parameters will remain fixed.

Mathematically, therefore, a surface is described by:
1 equality (e.g., $x=5$ OR $r=3$) AND 2 inequalities (e.g., $-1<y<5$ and $-2<z<7$ OR $0<\theta<\pi / 2$ and $0<\phi<\pi)$

- Therefore, we will need to explicitly determine the differential surface vector $\overline{d s}$ for each contour.

Cartesian Coordinate Surfaces

3. Flat plane parallel to $x-y$ plane.

$$
\begin{array}{|c}
\begin{array}{|c}
z=c_{z} \\
c_{x 1} \leq x \leq c_{x 2} \quad c_{y 1} \leq y \leq c_{y 2} \\
\\
\\
\hline \overline{d s}= \pm \overline{d s_{z}}= \pm \hat{a}_{z} d x d z
\end{array}
\end{array}
$$

Cylindrical Coordinate Surfaces

1. Circular cylinder centered around the z-axis.

$$
\begin{gathered}
\rho=c_{\rho} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{d s}= \pm \overline{d s_{\rho}}= \pm \hat{a}_{\rho} \rho d \phi d z
\end{gathered}
$$

2. Vertical plane extending from the z-axis

$$
\begin{gathered}
\phi=c_{\phi} \quad c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{d s}= \pm \overline{d s_{\phi}}= \pm \hat{a}_{\phi} d \rho d z
\end{gathered}
$$

3. Flat plane parallel to $x-y$ plane.

$$
\frac{c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}}{\overline{\overline{d s}}= \pm \overline{d s_{z}}=\hat{a}_{z} \rho d \phi d \rho}
$$

Cylindrical Coordinate Surfaces

Example

Find the area of a cylindrical surface described by $\rho=5,30^{\circ} \leq \varphi \leq 60^{\circ}$ in the following figure.

Spherical Coordinate Surfaces

1. Sphere centered at the origin.

$$
r=c_{r} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

$$
\overline{d s}= \pm \overline{d s_{r}}= \pm \hat{a}_{r} r^{2} \sin \theta d \theta d \phi
$$

2. Vertical plane extending from the z-axis

$$
\phi=c_{\phi} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2} \quad c_{r 1} \leq r \leq c_{r 2}
$$

$$
\overline{d s}= \pm \overline{d s_{z}}= \pm \hat{a}_{\phi} r d r d \theta
$$

3. A cone with apex at the origin and aligned with the z-axis

$$
\theta=c_{\theta} \quad c_{r 1} \leq r \leq c_{r 2} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

$$
\overline{d s}= \pm \overline{d s_{\theta}}= \pm \hat{a}_{\theta} r \sin \theta d \phi d r
$$

Example

The spherical strip shown in following figure is a section of a sphere of radius 3 cm . Find the area of the strip.

The Volume V

- As we might expect from our knowledge about how to specify a point P (3 equalities), a contour C (2 equalities and 1 inequality), and a surface S (1 equality and 2 inequalities), a volume v is defined by 3 inequalities.

Cartesian

The inequalities:

$$
c_{x 1} \leq x \leq c_{x 2} \quad c_{y 1} \leq y \leq c_{y 2} \quad c_{z 1} \leq z \leq c_{z 2}
$$

define a rectangular volume, whose sides are parallel to the $x-y$, $y-z$, and $x-z$ planes.

- The differential volume dv used for constructing this Cartesian volume is:

The Volume V

Cylindrical

The inequalities: $\quad \mathrm{c}_{\rho 1} \leq \rho \leq \mathrm{c}_{\rho 2} \quad \mathrm{c}_{\phi 1} \leq \phi \leq \mathrm{c}_{\phi 2} \quad \mathrm{c}_{\mathrm{z} 1} \leq \mathrm{z} \leq \mathrm{c}_{\mathrm{z} 2}$
defines a cylinder, or some subsection thereof (e.g. a tube!).

- The differential volume dv is used for constructing this cylindrical volume is:

Spherical

The inequalities:

$$
c_{r 1} \leq r \leq c_{r 2} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2}
$$

$$
c_{\phi 1} \leq \phi \leq c_{\phi 2}
$$

defines a sphere, or some subsection thereof (e.g., an "orange slice" !).

- The differential volume $\mathbf{d v}$ used for constructing this spherical volume is:

$$
d v=r^{2} \sin \theta d r d \theta d \phi
$$

$$
\therefore v=\int_{c_{r 1}}^{c_{r 2}} \int_{c_{\theta 1}}^{c_{c_{2}}} \int_{c_{\phi 1}}^{c_{\phi 2}} \rho d \rho d \phi d z
$$

Example: The Volume Integral

Let's evaluate the volume integral: $\quad \iint_{V} g(\bar{r}) d v$
where $g(\bar{r})=1$ and the volume v is a sphere with radius R .
In other words, the volume v is described for:

$$
\begin{aligned}
& \iiint_{g(\bar{r}) d v} \\
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

- Therefore we use for the differential volume dv:

$$
d v=\overline{d r} \cdot \overline{d \theta} \times \overline{d \phi}=r^{2} \sin \theta d r d \theta d \phi
$$

- Therefore: $\iiint_{v} g(\bar{r}) d \nu=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} r^{2} \sin \theta d r d \theta d \phi=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{R} r^{2} d r=(2 \pi)(2)\left(\frac{R^{3}}{3}\right)$

$$
\therefore \iiint_{v} g(\bar{r}) d v=\frac{4 \pi R^{3}}{3}
$$

Example: The Volume Integral

Q: So what's the volume integral even good for?
A: Generally speaking, the scalar function $g(\bar{r})$ will be a density function, with units of things/unit volume. Integrating $g(\bar{r})$ with the volume integral provides us the number of things within the space v !

For example, let's say $g(\bar{r})$ describes the density of a big swarm of insects, using units of insects/m ${ }^{3}$ (i.e., insects are the things).

Note that $g(\bar{r})$ must indeed be a function of position, as the density of insects changes at different locations
 throughout the swarm.

Example: The Volume Integral

- Now, say we want to know the total number of insects within the swarm, which occupies some space v. We can determine this by simply applying the volume integral!

$$
\text { number of insects in swarm }=\iiint_{v} g(\bar{r}) d v
$$

where space v completely encloses the insect swarm.

The Gradient Operator in Coordinate Systems

- For the Cartesian coordinate system, the Gradient of a scalar field T is expressed as:

$$
\nabla T=\frac{\partial T}{\partial x} \hat{a}_{x}+\frac{\partial T}{\partial y} \hat{a}_{y}+\frac{\partial T}{\partial z} \hat{a}_{z}
$$

$$
\underline{\text { Gradient Operator: }} \nabla=\frac{\partial}{\partial x} \hat{a}_{x}+\frac{\partial}{\partial y} \hat{a}_{y}+\frac{\partial}{\partial z} \hat{a}_{z}
$$

- Now let's consider the gradient operator in the other coordinate systems.
- Pfft! This is easy! The gradient operator in the spherical coordinate system is:

$$
\left.\nabla T=\frac{\partial T}{\partial r} \hat{a}_{r}+\frac{\partial T}{\partial \theta} \hat{a}_{\theta}+\frac{\partial T}{\partial \phi} \hat{a}_{\phi}\right) \text { Right ?? }
$$

NO!! The above equation is not correct!

- Instead, for spherical coordinates, the gradient is expressed as:

$$
\nabla T=\frac{\partial T}{\partial r} \hat{a}_{r}+\frac{1}{r} \frac{\partial T}{\partial \theta} \hat{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial T}{\partial \phi} \hat{a}_{\phi}
$$

- And for the cylindrical coordinate system: $\nabla T=\frac{\partial T}{\partial \rho} \hat{a}_{\rho}+\frac{1}{\rho} \frac{\partial T}{\partial \phi} \hat{a}_{\phi}+\frac{\partial T}{\partial z} \hat{a}_{z}$

Example

Find the directional derivative of $T=x^{2}+y^{2} z$ along direction $2 \hat{a}_{x}+3 \hat{a}_{y}-$ $2 \hat{a}_{z}$ and evaluate it at $(1,-1,2)$.

Example

Find the gradient of $\mathrm{V}=V_{0} e^{-2 \rho} \sin 3 \varphi$ at $(1, \pi / 2,3)$ in cylindrical coordinates.

Example

Find the gradient of $\mathrm{U}=U_{0}\left(\frac{a}{r}\right) \cos 2 \theta$ at $(2 a, 0, \pi)$ in spherical coordinates.

The Conservative Vector Field

- Of all possible vector fields $\vec{A}(\vec{r})$, there is a subset of vector fields called conservative fields. A conservative vector field is a vector field that can be expressed as the gradient of some scalar field $g(\bar{r})$:

$$
\vec{C}(\bar{r})=\Delta \mathrm{g}(\bar{r})
$$

In other words, the gradient of any scalar field always results in a conservative field!

- A conservative field has the interesting property that its line integral is dependent on the beginning and ending points of the contour only! In other words, for the two contours:

$$
\int_{c_{1}} \vec{C}(\bar{r}) \cdot \overline{d l}=\int_{C_{2}} \vec{C}(\bar{r}) \cdot \overline{d l}
$$

- We therefore say that the line integral of a conservative field is path independent.

The Conservative Vector Field (contd.)

- This path independence is evident when considering the integral identity:

$$
\int_{C} \nabla g(\bar{r}) \cdot \overline{d l}=g\left(\bar{r}=\bar{r}_{B}\right)-g\left(\bar{r}=\bar{r}_{A}\right)
$$

position vector $\overline{r_{B}}$ denotes the ending point $\left(\mathrm{P}_{\mathrm{B}}\right)$ of contour C , and $\overline{r_{A}}$ denotes the beginning point (P_{A}). $g\left(\bar{r}=\overline{r_{B}}\right.$) denotes the value of scalar field $g(\bar{r})$ evaluated at the point denoted by $\overline{r_{B}}$, and $g\left(\bar{r}=\bar{r}_{A}\right)$ denotes the value of scalar field $g(\bar{r})$ evaluated at the point denoted by $\overline{r_{A}}$.

- For one dimension, the above identity simply reduces to the familiar expression:

$$
\int_{x_{a}}^{x_{x}} \frac{\partial g(x)}{\partial x} d x=g\left(x=x_{b}\right)-g\left(x=x_{a}\right)
$$

- Since every conservative field can be written in terms of the gradient of a scalar field, we can use this identity to conclude:

$$
\left.\int_{C} \vec{C}(\bar{r}) \cdot \overline{d l}=\int_{C} \nabla g(\bar{r}) \cdot \overline{d l}\right)
$$

$$
\therefore \int_{C} \vec{C}(\bar{r}) \cdot \overline{d l}=g\left(\bar{r}=\bar{r}_{B}\right)-g\left(\bar{r}=\bar{r}_{A}\right)
$$

Consider then what happens then if we integrate over a closed contour.

The Conservative Vector Field (contd.)

Q: What the heck is a closed contour ??
A: A closed contour's beginning and ending is the same point! e.g.,

A contour that is not closed is referred to as an open contour.

- Integration over a closed contour is denoted as:

$$
\oint_{C} \vec{A}(\bar{r}) \cdot \overline{d l}
$$

- The integration of a conservative field over a closed contour is therefore:

$$
\oint_{C} \vec{C}(\bar{r}) \cdot \overline{d l}=\oint_{C} \nabla g(\bar{r}) \cdot \overline{d l} \square=g\left(\bar{r}=\bar{r}_{B}\right)-g\left(\bar{r}=\bar{r}_{A}\right) \square=0
$$

This result is due to the fact that $\overline{r_{A}}=\overline{r_{B}} \longleftrightarrow g\left(\bar{r}=\bar{r}_{B}\right)=g\left(\bar{r}=\bar{r}_{A}\right)$

The Conservative Vector Field (contd.)

- Let's summarize what we know about a conservative vector field:

1. A conservative vector field can always be expressed as the gradient of a scalar field.
2. The gradient of any scalar field is therefore a conservative vector field.
3. Integration over an open contour is dependent only on the value of scalar field $g(\bar{r})$ at the beginning and ending points of the contour (i.e., integration is path independent).
4. Integration of a conservative vector field over any closed contour is always equal to zero.

Example

- Consider the conservative vector field:

$$
\vec{A}(\bar{r})=\nabla\left(x^{2}+y^{2}\right) z
$$

- Evaluate the contour integral: $\int_{C}^{\vec{A}(\bar{r}) \cdot \overline{d l}}$

$$
\text { where } \quad \vec{A}(\bar{r})=\nabla\left(x^{2}+y^{2}\right) z
$$

and contour C is:

- The beginning of contour C is the point denoted as: $\bar{r}_{A}=3 \hat{a}_{x}-\hat{a}_{y}+4 \hat{a}_{z}$
- while the end point is denoted with position vector: $\bar{r}_{B}=-3 \hat{a}_{x}-2 \hat{a}_{z}$

Note that ordinarily, this would be an impossible problem for us to do!

Example (contd.)

- we note that vector field $\vec{A}(\vec{r})$ is conservative, therefore:

$$
\int_{C} \vec{A}(\bar{r}) \cdot \overline{d l}=\int_{C} \nabla g(\bar{r}) \cdot \overline{d l} \quad \Longrightarrow \quad g\left(\bar{r}=\bar{r}_{B}\right)-g\left(\bar{r}=\bar{r}_{A}\right)
$$

- For this problem, it is evident that:

$$
g(\bar{r})=\left(x^{2}+y^{2}\right) z
$$

- Therefore, $g\left(\bar{r}=\bar{r}_{A}\right)$ is the scalar field evaluated at $x=3, y=-1, z=4$; while $g\left(\bar{r}=\overline{r_{B}}\right)$ is the scalar field evaluated at at $x=-3, y=0, z=-2$.

$$
g\left(\bar{r}=\bar{r}_{A}\right)=\left((3)^{2}+(-1)^{2}\right) 4=40 \quad g\left(\bar{r}=\bar{r}_{B}\right)=\left((-3)^{2}+(0)^{2}\right)(-2)=-18
$$

Therefore:

$$
\int_{C} \vec{A}(\bar{r}) \cdot \overline{d l}=\int_{C} \nabla g(\bar{r}) \cdot \overline{d l}
$$

$$
=-18-40=-58
$$

The Divergence of a Vector Field

- The mathematical definition of divergence is: $\quad \nabla \cdot \vec{A}(\vec{r})=\lim _{\Delta v \rightarrow 0} \frac{S}{\Delta v}$ where the surface S is a closed surface that completely surrounds a very small volume Δv at point \bar{r}, and $\overline{d s}$ points outward from the closed surface.
- The divergence indicates the amount of vector field $\vec{A}(\bar{r})$ that is converging to, or diverging from, a given point.
- For example, consider the vector fields in the region of a specific point:

The Divergence of a Vector Field (contd.)

- Lets consider some other vector fields in the region of a specific point:

Cartesian

$$
\nabla \cdot \vec{A}(\bar{r})=\frac{\partial A_{x}(\bar{r})}{\partial x}+\frac{\partial A_{y}(\bar{r})}{\partial y}+\frac{\partial A_{z}(\bar{r})}{\partial z}
$$

Cylindrical

$$
\begin{aligned}
& \nabla . \vec{A}(\bar{r})=\frac{1}{\rho}\left[\frac{\partial\left(\rho A_{\rho}(\bar{r})\right)}{\partial \rho}\right]+\frac{1}{\rho} \frac{\partial A_{\phi}(\bar{r})}{\partial \phi}+\frac{\partial A_{z}(\bar{r})}{\partial z} \\
& \nabla . \vec{A}(\bar{r})=\frac{1}{r^{2}}\left[\frac{\partial\left(r^{2} A_{r}(\bar{r})\right)}{\partial r}\right]+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}(\bar{r})\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}(\bar{r})}{\partial \phi}
\end{aligned}
$$

The Divergence Theorem

- Recall we studied volume integrals of the form:

$$
\iiint_{v} g(\bar{r}) d v
$$

- It turns out that any and every scalar field can be written as the divergence of some vector field, i.e.:

$$
g(\bar{r})=\nabla \cdot \vec{A}(\bar{r})
$$

- Therefore we can equivalently write any volume integral as:

$$
\iiint_{v} \nabla \cdot \vec{A}(\bar{r}) d v
$$

- The divergence theorem states that this integral is equal to:

$$
\iiint_{v} \nabla \cdot \vec{A}(\bar{r}) d v=\oiint_{S} \vec{A}(\bar{r}) \cdot \overline{d s}
$$

where S is the closed surface that completely surrounds volume v, and vector $\overline{d s}$ points outward from the closed surface. For example, if volume v is a sphere, then S is the surface of that sphere.

The divergence theorem states that the volume integral of a scalar field can be likewise evaluated as a surface integral of a vector field!

Example

Determine the divergence of $\vec{E}=3 x^{2} \hat{a}_{x}+2 z \hat{a}_{y}+x^{2} z \hat{a}_{z}$ and evaluate it at ($2,-2,0$).

Example

Determine the divergence of $\vec{E}=\hat{a}_{r}\left(a^{3} \cos \theta / r^{2}\right)-\hat{a}_{\theta}\left(a^{3} \sin \theta / r^{2}\right)$ and evaluate it at $\left(\frac{a}{2}, 0, \pi\right)$.

The Curl of a Vector Field

Say $\nabla \times \vec{A}(\vec{r})=\vec{B}(\vec{r})$. The mathematical definition of Curl is given as:

$$
B_{i}(\vec{r})=\lim _{\Delta s \rightarrow 0} \frac{c_{i}}{} \frac{\vec{A}(\vec{r}) \cdot d \overline{d r}}{\Delta s_{i}},
$$

This rather complex equation requires some explanation!

- $B_{i}(\bar{r})$ is the scalar component of vector $\vec{B}(\bar{r})$ in the direction defined by unit vector \hat{a}_{i} (e.g., $\hat{a}_{x}, \hat{a}_{\rho}, \hat{a}_{\theta}$).
- The small surface Δs_{i} is centered at point and oriented such that it is normal to unit vector \hat{a}_{i}.
- The contour C_{i} is the closed contour that surrounds surface Δs_{i}.

Note that this derivation must be completed for each of the three orthonormal base vectors in order to completely define $\nabla \times$

$$
\vec{A}(\vec{r})=\vec{B}(\bar{r})
$$

The Curl of a Vector Field (contd.)

Q: What does curl tell us?
A: Curl is a measurement of the circulation of vector field $\vec{A}(\bar{r})$ around point \bar{r}.

- If a component of vector field $\vec{A}(\bar{r})$ is pointing in the direction $\overline{d l}$ at every point on contour C_{i} (i.e., tangential to the contour). Then the line integral, and thus the curl, will be positive.
- If, however, a component of vector field $\vec{A}(\bar{r})$ points in the opposite direction $(-\bar{d} l)$ at every point on the contour, the curl at point \bar{r} will be negative.

The Curl of a Vector Field (contd.)

- following vector fields will result in a curl with zero value at point \bar{r} :

$B_{i}=0$

$B_{i}=0$
- Generally, the curl of a vector field result in another vector field whose magnitude is positive in some regions of space, negative in other regions, and zero elsewhere.
- For most physical problems, the curl of a vector field provides another vector field that indicates rotational sources (i.e., "paddle wheels") of the original vector field.

Curl in Coordinate Systems

- Consider now the curl of vector fields expressed using our coordinate systems.

$$
\nabla \times \vec{A}(\bar{r})=\left[\frac{\partial A_{y}(\bar{r})}{\partial z}-\frac{\partial A_{z}(\bar{r})}{\partial y}\right] \hat{a}_{x}+\left[\frac{\partial A_{z}(\bar{r})}{\partial x}-\frac{\partial A_{x}(\bar{r})}{\partial z}\right] \hat{a}_{y}+\left[\frac{\partial A_{x}(\bar{r})}{\partial y}-\frac{\partial A_{y}(\bar{r})}{\partial x}\right] \hat{a}_{z}
$$

$$
\nabla \times \vec{A}(\bar{r})=\left[\frac{1}{\rho} \frac{\partial A_{z}(\bar{r})}{\partial \phi}-\frac{\partial A_{\phi}(\bar{r})}{\partial z}\right] \hat{a}_{\rho}+\left[\frac{\partial A_{\rho}(\bar{r})}{\partial z}-\frac{\partial A_{z}(\bar{r})}{\partial \rho}\right] \hat{a}_{\phi}+\left[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\phi}(\bar{r})\right)-\frac{1}{\rho} \frac{\partial A_{\rho}(\bar{r})}{\partial \phi}\right] \hat{a}_{z}
$$

$$
\left.\nabla \times \vec{A}(\bar{r})=\left[\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}(\bar{r})\right)-\frac{1}{r \sin \theta} \frac{\partial A_{\theta}(\bar{r})}{\partial \phi}\right] \hat{a}_{r}+\left[\frac{1}{r \sin \theta} \frac{\partial A_{r}(\bar{r})}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\phi}(\bar{r})\right)\right] \hat{a}_{\theta}\right)
$$

$$
+\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\theta}(\bar{r})\right)-\frac{1}{r} \frac{\partial A_{r}(\bar{r})}{\partial \theta}\right] \hat{\phi}_{\phi}
$$

Yikes! These expressions are very complex. Precision, organization, and patience are required to correctly evaluate the curl of a vector field!

Stokes' Theorem

- Consider a vector field $\vec{B}(\bar{r})$ where:

$$
\vec{B}(\vec{r})=\nabla \times \vec{A}(\bar{r})
$$

- Say we wish to integrate this vector field over an open surface S :

$$
\iint_{S} \vec{B}(\bar{r}) \cdot \overline{d S}=\iint_{S} \nabla \times \vec{A}(\bar{r}) \cdot \overline{d S}
$$

- We can likewise evaluate this integral using Stokes' Theorem:

$$
\left.\iint_{S} \nabla \times \vec{A}(\bar{r}) \cdot \overline{d S}=\oint_{C} \vec{A}(\bar{r}) \cdot \overline{d l}\right)
$$

- In this case, the contour C is a closed contour that surrounds surface S. The direction of C is defined by $\overline{d s}$ and the right hand rule. In other words C rotates counter clockwise around $\overline{d s}$. e.g.,

Example

Determine the curl of $\vec{A}=10 e^{-2 \rho} \hat{a}_{\rho} \cos \varphi+10 \sin \varphi \hat{a}_{z}$ and evaluate it at $(2,0,3)$ in cylindrical coordinates.

Example

Determine the curl of $\vec{B}=12 \sin \theta \hat{a}_{\theta}$ and evaluate it at $(3, \pi / 6,0)$ in spherical coordinates.

The Curl of Conservative Fields

- Recall that every conservative field can be written as the

$$
\vec{C}(\bar{r})=\nabla g(\bar{r})
$$ gradient of some scalar field:

$$
C_{y}(\bar{r})=\frac{\partial g(\bar{r})}{\partial y}
$$

$$
C_{z}(\bar{r})=\frac{\partial g(\bar{r})}{\partial z}
$$

- Consider now the curl of a conservative field:

$$
\nabla \times \vec{C}(\bar{r})=\nabla \times \nabla g(\bar{r})
$$

- Recall that if $\vec{C}(\bar{r})$ is expressed using the Cartesian coordinate system, the curl of $\vec{C}(\bar{r})$ is:

$$
\nabla \times \vec{C}(\bar{r})=\left[\frac{\partial C_{z}}{\partial y}-\frac{\partial C_{y}}{\partial z}\right] \hat{a}_{x}+\left[\frac{\partial C_{x}}{\partial z}-\frac{\partial C_{z}}{\partial x}\right] \hat{a}_{y}+\left[\frac{\partial C_{y}}{\partial x}-\frac{\partial C_{x}}{\partial y}\right] \hat{a}_{z}
$$

- Likewise, the gradient of $g(\bar{r})$ is: $\nabla \times \vec{C}(\bar{r})=\left[\frac{\partial C_{z}}{\partial y}-\frac{\partial C_{y}}{\partial z}\right] \hat{a}_{x}+\left[\frac{\partial C_{x}}{\partial z}-\frac{\partial C_{z}}{\partial x}\right] \hat{a}_{y}+\left[\frac{\partial C_{y}}{\partial x}-\frac{\partial C_{x}}{\partial y}\right] \hat{a}_{z}$
- Combining the two results:

$$
\left.\nabla \times \nabla g(\bar{r})=\nabla \times \vec{C}(\bar{r})=\left[\frac{\partial^{2} g(\bar{r})}{\partial y \partial z}-\frac{\partial^{2} g(\bar{r})}{\partial z \partial y}\right] \hat{a}_{x}+\left[\frac{\partial^{2} g(\bar{r})}{\partial z \partial x}-\frac{\partial^{2} g(\bar{r})}{\partial x \partial z}\right] \hat{a}_{y}+\left[\frac{\partial^{2} g(\bar{r})}{\partial x \partial y}-\frac{\partial^{2} g(\bar{r})}{\partial y \partial x}\right] \hat{a}_{z}\right)
$$

The Curl of Conservative Fields (contd.)

- We know: $\frac{\partial^{2} g(\bar{r})}{\partial y \partial z}=\frac{\partial^{2} g(\bar{r})}{\partial z \partial y}$
- each component of $\nabla \times \nabla g(\bar{r})$ is then equal to zero, and we can say:

$$
\nabla \times \nabla g(\bar{r})=\nabla \times \vec{C}(\bar{r})=0
$$

\square The curl of every conservative field is equal to zero !
Q: Are there some non-conservative fields whose curl is also equal to zero?
A: NO! The curl of a conservative field, and only a conservative field, is equal to zero.

- Thus, we have way to test whether some vector field $\vec{A}(\vec{r})$ is conservative: evaluate its cur!!

1. If the result equals zero-the vector field is conservative.
2. If the result is non-zero-the vector field is not conservative.

The Curl of Conservative Fields (contd.)

- Let's again recap what we've learnt about conservative fields:

1. The line integral of a conservative field is path independent.
2. Every conservative field can be expressed as the gradient of some scalar field.
3. The gradient of any and all scalar fields is a conservative field.
4. The line integral of a conservative field around any closed contour is equal to zero.
5. The curl of every conservative field is equal to zero.
6. The curl of a vector field is zero only if it is conservative.

The Solenoidal Vector Field

1. We know that a conservative vector field $\vec{C}(\vec{r})$ can be identified from its curl, which is always equal to zero:

$$
\nabla \times \vec{C}(\bar{r})=0
$$

- Similarly, there is another type of vector field $\vec{S}(\vec{r})$, called a solenoidal field, whose divergence always equals zero:

```
\nabla.\vec{S}(\vec{r})=0
```

Moreover, it should be noted that only solenoidal vector have zero divergence! Thus, zero divergence is a test for determining if a given vector field is solenoidal.

> We sometimes refer to a solenoidal field as a divergenceless field.

The Solenoidal Vector Field (contd.)

2. Recall that another characteristic of a conservative vector field is that it can be expressed as the gradient of some scalar field (i.e., $\vec{C}(\bar{r})=\nabla g(\bar{r})$).

- Solenoidal vector fields have a similar characteristic! Every solenoidal vector field can be expressed as the curl

$$
\vec{S}(\bar{r})=\nabla \times \vec{A}(\bar{r})
$$ of some other vector field (say $\vec{A}(\vec{r})$).

- Additionally, it is important to note that only solenoidal vector fields can be expressed as the curl of some other vector field.

The curl of any vector field always results in a solenoidal field!

- Note if we combine these two previous equations, we get a vector identity:

$$
\nabla . \nabla \times \vec{A}(\vec{r})=0
$$

a result that is always true for any and every vector field $\vec{A}(\vec{r})$.

The Solenoidal Vector Field (contd.)

3. Now, let's recall the divergence theorem:

$$
\iiint_{v} \nabla \cdot \vec{A}(\bar{r}) d v=\oiint_{S} \vec{A}(\bar{r}) \cdot \overline{d s}
$$

- If the vector field $\vec{A}(\bar{r})$ is solenoidal, we can write this theorem as:

$$
\iiint_{v} \nabla \cdot \vec{S}(\bar{r}) d v=\oiint_{S} \vec{S}(\bar{r}) \cdot \overline{d s}
$$

But the divergence of a solenoidal field is zero:

$$
\nabla \cdot \vec{S}(\bar{r})=0
$$

As a result, the left side of the divergence theorem is zero, and we can conclude that:

$$
\oiint_{S} \vec{S}(\bar{r}) \cdot \overline{d s}=0
$$

In other words the surface integral of any and every solenoidal vector field across a closed surface is equal to zero.

- Note this result is analogous to evaluating a line integral of a conservative field over a closed contour:

$$
\oint_{C} \vec{C}(\bar{r}) \cdot \overline{d l}=0
$$

The Solenoidal Vector Field (contd.)

- Lets summarize what we know about solenoidal vector fields:

1. Every solenoidal field can be expressed as the curl of some other vector field.
2. The curl of any and all vector fields always results in a solenoidal vector field.
3. The surface integral of a solenoidal field across any closed surface is equal to zero.
4. The divergence of every solenoidal vector field is equal to zero.
5. The divergence of a vector field is zero only if it is solenoidal.
