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• Contours (Cartesian, Cylindrical, and Spherical)
• Surfaces (Cartesian, Cylindrical, and Spherical)
• Volume
• Gradient, Divergence, and Curl 
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The Contour C

Mathematically, a contour is described by:

2 equalities (e.g., x =2, y =-4; r =3, ϕ =π/4)

1 inequality (e.g., -1 < z < 5; 0 < θ < π/2)

AND

• Likewise, we need to explicitly determine the differential displacement
vector  𝑑𝑙 for each contour.

Recall we have studied seven coordinate parameters (x, y, z, ρ, ϕ, r, θ ). As 
a result, we can form seven different contours C!
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Cartesian Contours

• Say we move a point from P(x =1, y =2, z =-3) to P(x =1, y =2, z=3) by
changing only the coordinate variable z from z =-3 to z=3. In other words,
the coordinate values x and y remain constant at x = 1 and y = 2.

• We form a contour that is a line segment, parallel to the z-axis!

x

y

z

C

P(1, 2, 3)

P(1, 2, -3)

Note that every point along 
this segment has coordinate 
values x =1 and y =2. As we 

move along the contour, the 
only coordinate value that 

changes is z.
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C

P(1, 2, 3)

P(1, 2, -3)
x

y

z

• Therefore, the differential directed distance associated with a change in
position from z to z +dz, is  𝑑𝑙 = 𝑑𝑧 =  𝑎𝑧dz

𝑑𝑧

Cartesian Contours (contd.)

Similarly, a line segment parallel to the 
x-axis (or y-axis) can be formed by 

changing coordinate parameter x (or y), 
with a resulting differential 

displacement vector of  𝑑𝑙 = 𝑑𝑥 =  𝑎𝑥dx
(or  𝑑𝑙 = 𝑑𝑦 =  𝑎𝑦dy).
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Cylindrical Contours
• Say we move a point from P(ρ =1, ϕ = 45ο, z =2) to P(ρ =3, ϕ = 45ο, z =2) by

changing only the coordinate variable ρ from ρ =1 to ρ =3. In other words,
the coordinate values φ and z remain constant at ϕ = 45ο and z =2.

• We form a contour that is a line segment, parallel to the x-y plane (i.e.,
perpendicular to the z-axis).

x

y

z
P(1, 45ο, 2)

P(3, 45ο, 2)

C

Note that every point along this 
segment has coordinate values ϕ
= 45ο and z =2. As we move along 
the contour, the only coordinate 

value that changes is ρ.

𝑑ρ

Therefore, the differential directed distance 
associated with a change in position from ρ 

to ρ+dρ, is  𝑑𝑙 = 𝑑ρ =  𝑎ρdρ
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x

y

z

Cylindrical Contours (contd.)
• Alternatively, say we move a point from P(ρ =3, ϕ = 0ο, z =2) to P(ρ =3, ϕ =

90ο, z =2) by changing only the coordinate variable φ from ϕ = 0ο to ϕ =
90ο. In other words, the coordinate values ρ and z remain constant at ρ =3
and z =2. We form a contour that is a circular arc, parallel to the x-y plane.

P(3, 0ο, 2)

P(3, 90ο, 2)

C

Note: if we move from φ = 0ο to 
ϕ = 360ο, a complete circle is 

formed around the z-axis.

Every point along the arc has 
coordinate values ρ = 3 and z =2. 
As we move along the contour, 
the only coordinate value that 

changes is ϕ.

𝑑ϕ

Therefore, the differential directed distance associated with a 
change in position from ϕ to ϕ+dϕ is  𝑑𝑙 = 𝑑φ =  𝑎φρdφ
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The three cylindrical contours are therefore described as:

1. Line segment parallel to the z-axis

2. Circular arc parallel to the xy-plane

3. Line segment parallel to the xy plane

c  c  1 2z zc z c  ˆ
zdl a dz

c 
zz c 1 2c c  

c  zz c
1 2c c  

ˆdl a d 

ˆdl a d 

Cylindrical Contours (contd.)
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Example
Find an expression for the unit vector of  𝐴 shown in the following Figure in 
cylindrical coordinates. 
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Spherical Contours 

• Say we move a point from P(r =0, θ = 60ο, ϕ = 45ο) to P(r =3, θ = 60ο, ϕ =
45ο) by changing only the coordinate variable r from r=0 to r =3. In other
words, the coordinate values θ and ϕ remain constant at θ = 60ο and ϕ =
45ο.

• We form a contour that is a line segment, emerging from the origin.

C

P(0, 60ο, 45ο)

P(3, 60ο, 45ο)

x

y

z Every point along the line segment 
has coordinate values θ = 60ο and 
ϕ = 45ο. As we move along the 

contour, the only coordinate value 
that changes is r.𝑑𝑟

Therefore, the differential directed distance 
associated with a change in position from r

to r+dr, is  𝑑𝑙 = 𝑑𝑟 =  𝑎𝑟dr
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P(3, 0ο, 45ο)

P(3, 90ο, 45ο)x

y

z

• Alternatively, say we move a point from P(r =3, θ = 0 ο, ϕ = 45ο) to P(r =3,
θ = 90ο, ϕ = 45ο) by changing only the coordinate variable θ from θ = 0 ο

to θ =90ο. In other words, the coordinate values r and ϕ remain constant
at r = 3 and ϕ = 45ο

Spherical Contours (contd.)

We form a circular arc, whose plane 
includes the z-axis.

Every point along the arc has 
coordinate values r = 3 and ϕ = 45ο. As 
we move along the contour, the only 
coordinate value that changes is θ.

𝑑θ

Therefore, the differential directed distance 
associated with a change in position from θ 

to θ+dθ, is  𝑑𝑙 = 𝑑θ =  𝑎θ𝑟𝑑θ
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• Finally, we could fix coordinates r and θ and vary coordinate φ only—but
we already did this in cylindrical coordinates! We again find that a
circular arc is generated, an arc that is parallel to the x-y plane.

Spherical Contours (contd.)

The three spherical contours are therefore:

3. Line segment directed towards the origin

1. Circular arc parallel to the xy-plane

2. Circular arc in a plane that includes z-axis

rr c c  1 2c c  

rr c c  1 2c c  

c  c  1 2r rc r c 

ˆ sindl a r d  

ˆdl a rd 

ˆ
rdl a dr
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• Although S represents any surface, no matter how complex or convoluted,
we will study only basic surfaces. In other words, 𝑑𝑠 will correspond to one
of the differential surface vectors from Cartesian, cylindrical, or spherical
coordinate systems.

The Surface S

• In this class, we will limit ourselves to studying only those surfaces that are
formed when we change the location of a point by varying two coordinate
parameters. In other words, the other coordinate parameters will remain
fixed.

Mathematically, therefore, a surface is described by:

1 equality (e.g., x=5  OR r = 3)     AND 2 inequalities (e.g., -1 < y < 5  and
-2 < z < 7    OR 0 < θ < π/2  and 0 < φ < π)

• Therefore, we will need to explicitly determine the differential surface
vector 𝑑𝑠 for each contour.
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Cartesian Coordinate Surfaces

ˆ
x xds dy dz a dydz  

ˆ
z zds dx dy a dxdy   1. Flat plane parallel to y-z plane.

xx c 1 2y yc y c 
1 2z zc z c 

ˆ
x xds ds a dydz   

2. Flat plane parallel to x-z plane.

yy c
1 2x xc x c  1 2z zc z c 

ˆ
y yds ds a dxdz   

3. Flat plane parallel to x-y plane.

zz c
1 2x xc x c  1 2y yc y c 

ˆ
z zds ds a dxdz   

ˆ
y yds dz dx a dxdz  
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Cylindrical Coordinate Surfaces

 𝑎ρ

 𝑎ϕ

 𝑎𝑧

1. Circular cylinder centered  around the z-axis.

c 
1 2c c  

1 2z zc z c 

ˆds ds a d dz     

2. Vertical plane extending from the z-axis

c 
1 2c c   1 2z zc z c 

ˆds ds a d dz     

3. Flat plane parallel to x-y plane.

zz c 1 2c c   1 2c c  

ˆ
z zds ds a d d    
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Cylindrical Coordinate Surfaces

0z 

 

 

Now let’s see if you’ve been 
paying attention! Determine 

the two inequalities that 
define this flat surface.
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Example

Find the area of a cylindrical surface described by ρ = 5, 30° ≤ 𝜑 ≤ 60° in
the following figure.
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Spherical Coordinate Surfaces

sinr d 

rd
dr

r

1. Sphere centered at the origin.

rr c
1 2c c   1 2c c  

2ˆ sinr rds ds a r d d     

3. A cone with apex at the origin and aligned with the z-axis

c 
1 2r rc r c  1 2c c  

ˆ sinds ds a r d dr      

2. Vertical plane extending from the z-axis

c 
1 2c c   1 2r rc r c 

ˆ
zds ds a rdrd    
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Example

The spherical strip shown in following figure is a section of a sphere of radius
3 cm. Find the area of the strip.



Indraprastha Institute of 

Information Technology Delhi ECE230

The Volume V

• As we might expect from our knowledge about how to specify a point P (3
equalities), a contour C (2 equalities and 1 inequality), and a surface S (1
equality and 2 inequalities), a volume v is defined by 3 inequalities.

Cartesian

The inequalities: cx1 ≤ x ≤cx2 cy1 ≤ y ≤cy2 cz1 ≤ z ≤cz2

define a rectangular volume, whose sides are parallel to the x-y,
y-z, and x-z planes.

• The differential volume dv used for constructing this Cartesian volume is:

dv =dxdydz
22 2

1 1 1

yx z

x y z

cc c

c c c

v dxdydz    
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Cylindrical
The inequalities: cρ1 ≤ ρ ≤ cρ2 cφ1 ≤ φ ≤ cφ2 cz1 ≤ z ≤cz2

defines a cylinder, or some subsection thereof (e.g. a tube!).

The Volume V

• The differential volume dv is used for constructing this cylindrical volume
is: dv = ρdρdφdz 2 2 2

1 1 1

z

z

c c c

c c c

v d d dz

 

 

      

Spherical
The inequalities: cr1  ≤ r ≤cr2 cθ1 ≤ θ ≤ cθ2 cφ1 ≤ φ ≤ cφ2

defines a sphere, or some subsection thereof (e.g., an “orange slice” !).

• The differential volume dv used for constructing this spherical volume is:

dv = r2 sinθ drdθdφ 222

1 1 1

r

r

ccc

c c c

v d d dz



 

      
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Example: The Volume Integral

where g(  𝑟) =1 and the volume v is a sphere with radius R.

Let’s evaluate the volume integral: ( )
v

g r dv

In other words, the volume v is described for: ( )
v

g r dv

0   

0 2  

• Therefore we use for the differential volume dv:

2. sindv dr d d r drd d      

2

2

0 0 0

( ) sin

R

v

g r dv r drd d

 

     • Therefore:
2

2

0 0 0

sin

R

d d r dr

 

        
3

2 2
3

R


 
  

 

34
( )

3
v

R
g r dv


 
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Q: So what’s the volume integral even good for?

A: Generally speaking, the scalar function 𝑔(  𝑟) will be a density function,
with units of things/unit volume. Integrating 𝑔(  𝑟) with the volume integral
provides us the number of things within the space v!

For example, let’s say 𝑔(  𝑟) describes the
density of a big swarm of insects, using
units of insects/m3 (i.e., insects are the
things).

Example: The Volume Integral

Note that 𝑔(  𝑟) must indeed be a
function of position, as the density of
insects changes at different locations
throughout the swarm.
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• Now, say we want to know the total number of insects within the swarm,
which occupies some space v. We can determine this by simply applying
the volume integral!

where space v completely encloses the 
insect swarm.

number of insects in swarm ( )
v

g r dv 

Example: The Volume Integral
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The Gradient Operator in Coordinate Systems

• Now let’s consider the gradient operator in the other coordinate systems.

NO!! The above equation is not correct!

• For the Cartesian coordinate system, the
Gradient of a scalar field T is expressed as:

ˆ ˆ ˆ
x y z

T T T
T a a a

x y z

  
   

  

Right ??ˆ ˆ ˆ
r

T T T
T a a a

r
 

 

  
   

  

• Pfft! This is easy! The gradient operator
in the spherical coordinate system is:

• Instead, for spherical coordinates,
the gradient is expressed as:

1 1
ˆ ˆ ˆ

sin
r

T T T
T a a a

r r r
 

  

  
   

  

• And for the cylindrical coordinate system: 1
ˆ ˆ ˆ

z

T T T
T a a a

z
 

  

  
   

  

ˆ ˆ ˆ
x y za a a

x y z

  
   

  
Gradient Operator:



Indraprastha Institute of 

Information Technology Delhi ECE230

Example

Find the directional derivative of 𝑇 = 𝑥2 + 𝑦2𝑧 along direction 2 𝑎𝑥 + 3 𝑎𝑦 −

2 𝑎𝑧 and evaluate it at 1,−1, 2 .

Example

Find the gradient of V = 𝑉0𝑒
−2𝜌𝑠𝑖𝑛3𝜑 at 1, 𝜋/2, 3 in cylindrical

coordinates.

Example

Find the gradient of U = 𝑈0
𝑎

𝑟
𝑐𝑜𝑠2𝜃 at 2𝑎, 0, 𝜋 in spherical coordinates.
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The Conservative Vector Field

• A conservative field has the interesting property
that its line integral is dependent on the beginning
and ending points of the contour only! In other
words, for the two contours:

1 2

( ). ( ).
C C

C r dl C r dl 

PA

PB

C2

C1

• Of all possible vector fields  𝐴  𝑟 , there is a subset of
vector fields called conservative fields. A conservative
vector field is a vector field that can be expressed as the
gradient of some scalar field g  𝑟 :

 𝐶  𝑟 = Δg  𝑟

In other words, the gradient of any scalar field always results in a 
conservative field!

• We therefore say that the line integral of a conservative field is path
independent.
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• This path independence is evident
when considering the integral identity:

   ( ). B A

C

g r dl g r r g r r    

• For one dimension, the above identity
simply reduces to the familiar expression:

   
( )b

a

x

b a

x

g x
dx g x x g x x

x


   



The Conservative Vector Field (contd.)

position vector  𝑟𝐵 denotes the ending point (PB) of contour C, and  𝑟𝐴

denotes the beginning point (PA). 𝑔  𝑟 =  𝑟𝐵 denotes the value of scalar
field 𝑔  𝑟 evaluated at the point denoted by  𝑟𝐵, and 𝑔  𝑟 =  𝑟𝐴 denotes
the value of scalar field 𝑔  𝑟 evaluated at the point denoted by  𝑟𝐴.

• Since every conservative field can be written in terms of the gradient of a
scalar field, we can use this identity to conclude:

( ). ( ).
C C

C r dl g r dl      ( ). B A

C

C r dl g r r g r r    

Consider then what happens then if we integrate over a closed contour.
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Q: What the heck is a closed contour ??

• Integration over a closed
contour is denoted as:

( ).
C

A r dl

The Conservative Vector Field (contd.)

PA
PB

Closed
Contour C

A: A closed contour’s beginning and
ending is the same point! e.g.,

A contour that is not closed 
is referred to as an open 

contour.

• The integration of a conservative field over a closed contour is therefore:

( ). ( ).
C C

C r dl g r dl      B Ag r r g r r    0

This result is due to the fact that  𝑟𝐴 =  𝑟𝐵    B Ag r r g r r  
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• Let’s summarize what we know about a conservative vector field:

1. A conservative vector field can always be expressed as the gradient of a
scalar field.

2. The gradient of any scalar field is therefore a conservative vector field.
3. Integration over an open contour is dependent only on the value of

scalar field 𝑔  𝑟 at the beginning and ending points of the contour (i.e.,
integration is path independent).

4. Integration of a conservative vector field over any closed contour is
always equal to zero.

The Conservative Vector Field (contd.)
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Example  

• Consider the conservative vector field:  2 2( )A r x y z 

• Evaluate the contour integral: ( ).
C

A r dl

and contour C is:
PA

PB

C

where  2 2( )A r x y z 

• The beginning of contour C is the point denoted as: ˆ ˆ ˆ3 4A x y zr a a a  

• while the end point is denoted with position vector: ˆ ˆ3 2B x zr a a  

Note that ordinarily, this would be an impossible 
problem for us to do!
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• we note that vector field  𝐴  𝑟 is conservative, therefore:

( ). ( ).
C C

A r dl g r dl      B Ag r r g r r   

• For this problem, it is evident that:  2 2( )g r x y z 

• Therefore, 𝑔  𝑟 =  𝑟𝐴 is the scalar field evaluated at 𝑥 = 3, 𝑦 = −1, 𝑧 = 4;
while 𝑔  𝑟 =  𝑟𝐵 is the scalar field evaluated at at 𝑥 = −3, 𝑦 = 0, 𝑧 = −2.

   2 2(3) ( 1) 4 40Ag r r         2 2( 3) (0) 2 18Bg r r      

Example (contd.)

Therefore:

( ). ( ).
C C

A r dl g r dl   18 40 58    
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The Divergence of a Vector Field

where the surface S is a closed surface that completely surrounds 
a very small volume Δv at point  𝑟, and 𝑑𝑠 points outward from the 

closed surface.

• The divergence indicates the amount of vector field  𝐴  𝑟 that is
converging to, or diverging from, a given point.

• For example, consider the vector fields in the region of a specific
point:

∆𝑣 ∆𝑣

∇.  𝐴(  𝑟) < 0 ∇.  𝐴(  𝑟) > 0

• The mathematical definition of divergence is:
0

( ).

. ( ) lim S

v

A r ds

A r
v 

 



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The Divergence of a Vector Field (contd.)

∇.  𝐴(  𝑟) = 0 ∇.  𝐴(  𝑟) = 0

∆v ∆v

• Lets consider some other vector fields in the region of a specific point:

Cartesian

Cylindrical

Spherical

     
. ( )

yx z
A rA r A r

A r
x y z

 
   

  

      1 1
. ( ) z

A r A r A r
A r

z

 


   

   
    

    

       
2

2

sin1 1 1
. ( )

sin sin

rr A r A r A r
A r

r r r r

 


   

   
    

    



Indraprastha Institute of 

Information Technology Delhi ECE230

The Divergence Theorem

• Recall we studied volume integrals of the form: ( )
v

g r dv

• It turns out that any and every scalar field can be
written as the divergence of some vector field, i.e.: ( ) . ( )g r A r

• Therefore we can equivalently write any volume 
integral as:

. ( )
v

A r dv

• The divergence theorem states
that this integral is equal to:

. ( ) ( ).
v S

A r dv A r ds  

where S is the closed surface that completely surrounds volume v, and 
vector 𝑑𝑠 points outward from the closed surface. For example, if 

volume v is a sphere, then S is the surface of that sphere.

The divergence theorem states that the volume integral 
of a scalar field can be likewise evaluated as a surface 

integral of a vector field!
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Example

Determine the divergence of 𝐸 = 3𝑥2  𝑎𝑥 + 2𝑧 𝑎𝑦 + 𝑥2𝑧  𝑎𝑧 and evaluate it at

2,−2, 0 .

Example

Determine the divergence of 𝐸 =  𝑎𝑟  𝑎3𝑐𝑜𝑠𝜃
𝑟2 −  𝑎𝜃  𝑎3𝑠𝑖𝑛𝜃

𝑟2 and

evaluate it at
𝑎

2
, 0, 𝜋 .
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The Curl of a Vector Field

Say ∇ ×  𝐴  𝑟 = 𝐵(  𝑟). The mathematical definition of Curl is given as:

0

( ).

( ) lim iC

i
s

i

A r dl

B r
s 




 This rather complex equation requires 
some explanation !

• 𝐵𝑖(  𝑟) is the scalar component of vector 𝐵  𝑟 in the direction defined by
unit vector  𝑎𝑖 (e.g.,  𝑎𝑥 ,  𝑎ρ ,  𝑎θ ).

• The small surface Δsi is centered at point  𝑟, and oriented such that it is
normal to unit vector  𝑎𝑖.

• The contour Ci is the closed contour that surrounds surface Δsi.

 𝑎𝑖

Ci

 𝑟

Note that this derivation must be 
completed for each of the three 

orthonormal base vectors in 
order to completely define ∇ ×

 𝐴  𝑟 = 𝐵(  𝑟). 
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The Curl of a Vector Field (contd.)

Q: What does curl tell us ?

A: Curl is a measurement of the circulation of vector field  𝐴  𝑟 around point  𝑟.

• If a component of vector field  𝐴  𝑟 is pointing in the direction  𝑑𝑙 at every
point on contour Ci (i.e., tangential to the contour). Then the line integral, and
thus the curl, will be positive.

• If, however, a component of vector field  𝐴  𝑟 points in the opposite direction
(− 𝑑𝑙) at every point on the contour, the curl at point  𝑟 will be negative.

𝐵𝑖 > 0 𝐵𝑖 < 0
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• following vector fields will result in a curl with zero value at point  𝑟:

The Curl of a Vector Field (contd.)

𝐵𝑖 = 0
𝐵𝑖 = 0

• Generally, the curl of a vector field result in another vector field whose
magnitude is positive in some regions of space, negative in other regions,
and zero elsewhere.

• For most physical problems, the curl of a vector field provides another
vector field that indicates rotational sources (i.e., “paddle wheels” ) of the
original vector field.
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Curl in Coordinate Systems
• Consider now the curl of vector fields expressed using our coordinate

systems.

( ) ( )( ) ( ) ( ) ( )
ˆ ˆ ˆ( )

y yz z x x
x y z

A r A rA r A r A r A r
A r a a a

z y x z y x

        
                   

 
( ) ( ) ( )1 ( ) ( ) 1 1

ˆ ˆ ˆ( ) ( )z z
z

A r A r A rA r A r
A r a a A r a

z z

  

  
      

         
           

          

   

 

1 1 ( ) 1 ( ) 1
ˆ ˆ( ) sin ( ) ( )

sin sin sin

1 1 ( )
ˆ( )

r
r

r

A r A r
A r A r a rA r a

r r r r r

A r
rA r a

r r r


  

 


     



      
             

  
    

Yikes! These expressions are very complex. Precision, organization, and 
patience are required to correctly evaluate the curl of a vector field !
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Stokes’ Theorem

• Consider a vector field  𝐵  𝑟 where: ( ) ( )B r A r

• Say we wish to integrate this vector field
over an open surface S:

( ). ( ).
S S

B r dS A r dS  

• We can likewise evaluate this 
integral using Stokes’ Theorem:

( ). ( ).
S C

A r dS A r dl  

• In this case, the contour C is a
closed contour that surrounds
surface S. The direction of C is
defined by 𝑑𝑠 and the right -
hand rule. In other words C
rotates counter clockwise
around 𝑑𝑠. e.g.,

C

𝑑𝑠
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Example

Determine the curl of  𝐴 = 10𝑒−2𝜌  𝑎𝜌𝑐𝑜𝑠𝜑 + 10𝑠𝑖𝑛𝜑 𝑎𝑧 and evaluate it at

2, 0, 3 in cylindrical coordinates.

Example
Determine the curl of 𝐵 = 12𝑠𝑖𝑛𝜃  𝑎𝜃 and evaluate it at 3, 𝜋/6, 0 in
spherical coordinates.
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The Curl of Conservative Fields

• Recall that every conservative field can be written as the
gradient of some scalar field:

( ) ( )C r g r

• Consider now the curl of a conservative field: ( ) ( )C r g r 

• Recall that if  𝐶(  𝑟) is expressed using the Cartesian coordinate system, the

curl of  𝐶(  𝑟) is:
ˆ ˆ ˆ( )

y yz x z x
x y z

C CC C C C
C r a a a

y z z x x y

        
                   

• Likewise, the gradient of 𝑔(  𝑟) is: ˆ ˆ ˆ( )
y yz x z x

x y z

C CC C C C
C r a a a

y z z x x y

        
                   

• Combining the two results:
2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) x y z

g r g r g r g r g r g r
g r C r a a a

y z z y z x x z x y y x

          
            

                

Therefore: ( )
( )x

g r
C r

x






( )
( )y

g r
C r

y






( )
( )z

g r
C r

z





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The Curl of Conservative Fields (contd.)

• We know:

2 2( ) ( )g r g r

y z z y

 


   

• each component of ∇ × ∇𝑔(  𝑟) is then equal to
zero, and we can say:

( ) ( ) 0g r C r  

The curl of every conservative field is equal to zero !

Q: Are there some non-conservative fields whose curl is also equal to zero?
A: NO! The curl of a conservative field, and only a conservative field, is equal 
to zero.

• Thus, we have way to test whether some vector field  𝐴  𝑟 is conservative:
evaluate its curl!

1. If the result equals zero—the vector field is conservative.
2. If the result is non-zero—the vector field is not conservative.
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• Let’s again recap what we’ve learnt about conservative fields:

The Curl of Conservative Fields (contd.)

1. The line integral of a conservative field is path independent.
2. Every conservative field can be expressed as the gradient of some

scalar field.
3. The gradient of any and all scalar fields is a conservative field.
4. The line integral of a conservative field around any closed contour is

equal to zero.
5. The curl of every conservative field is equal to zero.
6. The curl of a vector field is zero only if it is conservative.
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The Solenoidal Vector Field

1. We know that a conservative vector field  𝐶(  𝑟) can be
identified from its curl, which is always equal to zero:

( ) 0C r 

• Similarly, there is another type of vector field  𝑆(  𝑟), called a
solenoidal field, whose divergence always equals zero:

. ( ) 0S r 

Moreover, it should be noted that only solenoidal vector 
have zero divergence! Thus, zero divergence is a test for 

determining if a given vector field is solenoidal.

We sometimes refer to a solenoidal field 
as a divergenceless field.
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2. Recall that another characteristic of a conservative vector field is that it

can be expressed as the gradient of some scalar field (i.e.,  𝐶(  𝑟)=∇𝑔(  𝑟) ).

The Solenoidal Vector Field (contd.)

• Solenoidal vector fields have a similar characteristic!
Every solenoidal vector field can be expressed as the curl

of some other vector field (say  𝐴(  𝑟)).

( ) ( )S r A r

• Additionally, it is important to note that only solenoidal vector fields can
be expressed as the curl of some other vector field.

The curl of any vector field always results in a solenoidal field!

• Note if we combine these two previous equations, we get a vector
identity:

. ( ) 0A r 
a result that is always true for any 

and every vector field  𝐴(  𝑟).
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The Solenoidal Vector Field (contd.)

3. Now, let’s recall the divergence theorem: . ( ) ( ).
v S

A r dv A r ds  

• If the vector field  𝐴(  𝑟) is solenoidal, we 
can write this theorem as: 

. ( ) ( ).
v S

S r dv S r ds  

But the divergence of a solenoidal field is zero: . ( ) 0S r 

As a result, the left side of the divergence
theorem is zero, and we can conclude that:

( ). 0
S

S r ds 

In other words the surface integral of any and every solenoidal
vector field across a closed surface is equal to zero.

• Note this result is analogous to evaluating a line
integral of a conservative field over a closed contour:

( ). 0
C

C r dl 
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• Lets summarize what we know about solenoidal vector fields:

The Solenoidal Vector Field (contd.)

1. Every solenoidal field can be expressed as the curl of some other vector
field.

2. The curl of any and all vector fields always results in a solenoidal vector
field.

3. The surface integral of a solenoidal field across any closed surface is
equal to zero.

4. The divergence of every solenoidal vector field is equal to zero.
5. The divergence of a vector field is zero only if it is solenoidal.


