

<u>Lecture – 7</u>

Date: 21.01.2016

- Vector Arithmetic (Review)
- Coordinate System and Transformations
- Examples

Vector Addition

Q: Say we **add** two vectors \vec{A} and \vec{B} together; what is the **result**?

A: The addition of two vectors results in **another vector**, which we will denote as \vec{C} . Therefore, we can say: $\vec{A} + \vec{B} = \vec{C}$

The **magnitude** and **direction** of \vec{C} is determined by the **head-to-tail rule**.

This is not a **provable** result, rather the head-to-tail rule is the **definition** of vector addition. This definition is used because it has many **applications** in physics.

Some important properties of vector addition:

- 1. Vector addition is **commutative**: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
- 2. Vector addition is **associative**: $(\vec{X} + \vec{Y}) + \vec{Z} = \vec{X} + (\vec{Y} + \vec{Z}) = \vec{K}$

From these two properties, we can conclude that the addition of **several** vectors can be executed in **any order**

• We consider the addition of a negative vector as a **subtraction**.

 $a\vec{B} = \vec{C}$

Vector Multiplication

• Consider a scalar quantity a and a vector quantity \vec{B} . We express the multiplication of these two values as:

In other words, the product of a scalar and a vector is a vector!

Q: OK, but what **is** vector \vec{C} ? What is the **meaning** of \vec{C} ?

A: The resulting vector \vec{C} has a magnitude that is equal to \vec{a} times the magnitude of \vec{B} . In other words:

$$\left|\vec{C}\right| = a\left|\vec{B}\right|$$

The direction of vector \vec{C} is exactly that of \vec{B} .

→ Jut to reiterate, multiplying a vector by a scalar changes the **magnitude** of the vector, but **not** its direction.

Multiplication (contd.)

Some important properties of vector multiplication:

- 1. The scalar-vector multiplication is **distributive**: $a\vec{B} + b\vec{B} = (a+b)\vec{B}$
- 2. also **distributive** as:
- 3. Scalar-Vector multiplication is also **commutative**: $a\vec{B}$
- 4. Multiplication of a vector by a **negative** scalar is interpreted as:
- **5. Division** of a vector by a scalar is the same as multiplying the vector by the **inverse** of the scalar:

$$-a\vec{B} = a\left(-\vec{B}\right)$$

$$\frac{\vec{B}}{\vec{B}} = \left(\frac{1}{\vec{B}}\right)\vec{B}$$

$$a\vec{B} + a\vec{C} = a\left(\vec{B} + \vec{C}\right)$$

e:
$$a\vec{B} = \vec{B}a$$

Q: How is vector \hat{a}_A related to vector \vec{A} ?

Indraprastha Institute of

Information Technology Delhi

A: Since we divided \vec{A} by a scalar value, the vector \hat{a}_A has the same direction as vector \vec{A} .

A unit vector is essentially a **description of direction** only, as its magnitude is always unit valued (i.e., equal to one). Therefore:

- $|\vec{A}|$ is a scalar value that describes the **magnitude** of vector \vec{A} .
- \hat{a}_{A} is a vector that describes the **direction** of \vec{A} .

- Lets begin with vector \vec{A} . Say we **divide** this vector by its magnitude (a scalar value). We create a new vector, which we will denote as \hat{a}_{A} :

magnitude of

 $|\hat{a}_A| = \frac{1}{1}$

The Dot Product

• The **dot product** of two vectors, \vec{A} and \vec{B} , is **denoted** as $\vec{A} \cdot \vec{B}$

- Note also that the dot product is **commutative**:
- The dot product of a vector with itself is equal to the magnitude of the vector squared.
- If $\vec{A} \cdot \vec{B} = 0$ (and $\vec{A} \neq 0$, $\vec{B} \neq 0$), then it must be true that:
- If $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}|$, then it must be true that:
- The dot product is **distributive** with addition:

nmutative:
$$\vec{A}.\vec{B} = \vec{B}.\vec{A} \Rightarrow 0 \le \theta_A$$

$$0 \le \theta_{AB} \le \pi$$

$$\vec{A}.\vec{B} = \vec{B}.\vec{A}$$

$$\left| ec{A}
ight| = \sqrt{ec{A}.ec{A}}$$

 $\vec{A}.\vec{A} = |\vec{A}|.|\vec{A}|\cos 0^\circ = |\vec{A}|^2$

The Cross Product

• The cross product of two vectors, \vec{A} and \vec{B} , is denoted as $\vec{A} \times \vec{B}$.

 $\vec{A} \times \vec{B} = \hat{a}_n |\vec{A}| |\vec{B}| \sin \theta_{AB}$

Just as with the dot product, the angle θ_{AB} is the angle between the vectors \vec{A} and \vec{B} .The unit vector \hat{a}_n is **orthogonal** to both \vec{A} and \vec{B} (i.e., $\hat{a}_n \cdot \vec{A} = 0$ and $\hat{a}_n \cdot \vec{B} = 0$.)

IMPORTANT NOTE: The cross product is an operation involving **two vectors**, and the result is also a **vector**. e.g.,:

$$\vec{A} \times \vec{B} = \vec{C}$$

• The **magnitude** of vector $\vec{A} \times \vec{B}$ is therefore:

$$\left| \vec{A} \times \vec{B} \right| = \left| \vec{A} \right| \left| \vec{B} \right| \sin \theta_{AB}$$

While the **direction** of vector $\vec{A} \times \vec{B}$ is described by unit vector \hat{a}_n .

Indraprastha Institute of Information Technology Delhi

ECE230

The Cross Product (contd.)

Problem! There are **two** unit vectors that satisfy the equations $\hat{a}_n \cdot \vec{A} = 0$ and $\hat{a}_n \cdot \vec{B} = 0$!! These two vectors are **antiparallel**.

The Cross Product (contd.)

1. If
$$\theta_{AB} = 90^{\circ}$$
 (i.e., **orthogonal**), then:

2. If
$$\theta_{AB} = 0^{\circ}$$
 (i.e., **parallel**), then:

$$\left| \vec{A} \times \vec{B} = \hat{a}_n \left| \vec{A} \right| \left| \vec{B} \right| \sin 90^\circ = \hat{a}_n \left| \vec{A} \right| \left| \vec{B} \right|$$

Note that
$$\vec{A} \times \vec{B} = 0$$
 also if $\theta_{ab} = 180^{\circ}$

 $\vec{A} \times \vec{B} = \hat{a}_n |\vec{A}| |\vec{B}| \sin 0^\circ = 0$

3. The cross product is **not** commutative! In other words, $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$.

While evaluating the cross product of two vectors, the **order** is important !

$$\vec{A} \times \vec{B} \neq -(\vec{B} \times \vec{A})$$

4. The **negative** of the cross product is:

$$-(\vec{A}\times\vec{B}) = \vec{A}\times(-\vec{B})$$

$$\vec{A} \times \vec{B} \times \vec{C} \neq \vec{A} \times \left(\vec{B} \times \vec{C}\right)$$

 $\vec{A} \times (\vec{B} + \vec{C}) = (\vec{A} \times \vec{B}) + (\vec{A} \times \vec{C})$

- 5. The cross product is also **not** associative:
- 6. But, the cross product is **distributive**, in that:

The Triple Product

- The triple product is not a "new" operation, as it is simply a combination of the dot and cross products.
- For example, the triple product of vectors \vec{A} , \vec{B} , and \vec{C} is **denoted** as:

Q: Yikes! Does this mean:

A: The answer is **easy**! Only one of these two interpretations makes sense:

$$(\vec{A}.\vec{B}) \times \vec{C} = \text{Scalar X Vector} \longleftarrow \text{makes no sense}$$
$$\vec{A}.(\vec{B} \times \vec{C}) = \text{Vector . Vector} \longleftarrow \text{dot product}$$

The Position Vector

• Consider a point whose location in space is specified with Cartesian coordinates (e.g., P(x, y, z)). Now consider the **directed distance** (a vector quantity!) extending from the origin to this point.

This **particular** directed distance—a vector beginning at the **origin** and extending outward to a point—is a **very important** and fundamental directed distance known as the **position vector** \bar{r}

• Using the **Cartesian** coordinate system, the position vector can be explicitly written as:

$$\overline{r} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$$

The Position Vector (contd.)

- Note that given the coordinates of some point (e.g., x =1, y =2, z =-3), we can easily determine the corresponding position vector (e.g., $\bar{r} = \hat{a}_x + 2\hat{a}_y 3\hat{a}_z$).
- Moreover, given some specific position vector (e.g., $\bar{r} = 4\hat{a}_y 2\hat{a}_z$), we can easily determine the corresponding coordinates of that point (e.g., x =0, y =4, z =-2).
- In other words, a position vector \bar{r} is an alternative way to denote the location of a point in space! We can use **three coordinate values** to specify a point's location, **or** we can use a **single position vector** \bar{r} .

I see! The position vector is essentially a **pointer.** Look at the end of the vector, and you will find the **point specified**!

The magnitude of $m{r}$

• Note the **magnitude** of any and all position vectors is:

$$\left|\overline{r}\right| = \sqrt{\overline{r}.\overline{r}} = \sqrt{x^2 + y^2 + z^2} = r$$

Q: Hey, this makes perfect sense! Doesn't the coordinate value *r* have a physical interpretation as the distance between the point and the origin?

A: That's right! The magnitude of a directed distance vector is equal to the distance between the two points—in this case the distance between the specified point and the origin!

ECE230

Indraprastha Institute of Information Technology Delhi

ECE230

The Distance Vector

 x_2

Example – 1

In Cartesian coordinates, Vector \vec{A} points from the origin to point $P_1 = (2, 3, 3)$, and Vector \vec{B} is directed from P_1 to point $P_2 = (1, -2, 2)$. Find:

- (a) Vector \vec{A} , its magnitude A, and unit vector \hat{a} .
- (b) The angle between \vec{A} and the y-axis.
- (c) Vector \vec{B}
- (d) The angle θ_{AB} between \vec{A} and \vec{B} .
- (e) Then find the angle θ_{AB} from the cross product between \vec{A} and \vec{B} .
- (f) The perpendicular distance from the origin to Vector \vec{B}
- (g) Find the angle between Vector \vec{B} and the z-axis.

Example – 2

• Find the distance vector between $P_1 = (1, 2, 3)$ and $P_2 = (-1, -2, 3)$

Example – 3

• Vectors \vec{A} and \vec{B} lie in the y-z plane and both have the same magnitude of 2. Determine (a) $\vec{A} \cdot \vec{B}$ and (b) $\vec{A} \times \vec{B}$.

ECE230

Example – 4

• If $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$ then does it mean that $\vec{B} = \vec{C}$??

Example – 5

• Given $\vec{A} = \hat{a}_x - \hat{a}_y + 2\hat{a}_z$ $\vec{B} = \hat{a}_y + \hat{a}_z$ $\vec{C} = -2\hat{a}_x + 3\hat{a}_z$

Find $(\vec{A} \times \vec{B}) \times \vec{C}$ and compare it with $\vec{A} \times (\vec{B} \times \vec{C})$

Cartesian Coordinates

- Note the coordinate values in the Cartesian system effectively represent the distance from a plane intersecting the origin.
- For example, x =3 means that the point is 3 units from the y-z plane (i.e., the x = 0 plane).
- Likewise, the y coordinate provides the distance from the x-z (y=0) plane, and the z coordinate provides the distance from the x-y (z =0) plane.
- Once all three distances are specified, the position of a point is uniquely identified.

ECF230

Cylindrical Coordinates

 You're also familiar with polar coordinates. In two dimensions, we specify a point with two scalar values, generally called ρ and φ.

> We can extend this to **3**-dimensions, by adding a **third** scalar value z. This method for identifying the position of a point is referred to as **cylindrical coordinates**.

Cylindrical Coordinates

Note the **physical** significance of each parameter of **cylindrical** coordinates:

- 1. The value ρ indicates the **distance** of the point from the **z-axis** ($0 \le \rho < \infty$).
- The value φ indicates the rotation angle around the z-axis (0≤φ<2π), precisely the same as the angle φ used in spherical coordinates.
- 3. The value **z** indicates the **distance** of the point from the x-y (z = 0) plane $(-\infty < z < \infty)$, **precisely** the same as the coordinate **z** used in **Cartesian** coordinates.
- 4. Once **all three** values are specified, the **position** of a point is **uniquely** identified.

Spherical Coordinates

- Geographers specify a location on the Earth's surface using three scalar values: longitude, latitude, and altitude.
- Both longitude and latitude are angular measures, while altitude is a measure of distance.
- Latitude, longitude, and altitude are similar to spherical coordinates.
- Spherical coordinates consist of one scalar value (r), with units of distance, while the other two scalar values (θ, φ) have angular units (degrees or radians).

Spherical Coordinates

- For spherical coordinates, r (0≤r<∞) expresses the distance of the point from the origin (i.e., similar to altitude).
- Angle θ (0 ≤ θ ≤ π) represents the angle formed with the z-axis (i.e., similar to latitude).
- Angle φ (0≤φ<2π) represents the rotation angle around the z-axis, precisely the same as the cylindrical coordinate φ (i.e., similar to longitude).

Thus, using **spherical** coordinates, a point in space can be unambiguously defined by **one distance** and **two angles**.

Coordinate Transformations

- Say we know the location of a point, or the description of some scalar field in terms of Cartesian coordinates (e.g., T (x, y, z)).
- What if we decide to express this point or this scalar field in terms of cylindrical or spherical coordinates instead?
- We see that the coordinate values *z*, *ρ*, *r*, and *θ* are all variables of a right triangle! We can use our knowledge of trigonometry to relate them to each other.
- In fact, we can completely derive the relationship between all six independent coordinate values by considering just two very important right triangles!
 - <u>Hint:</u> Memorize these 2 triangles!!!

Coordinate Transformations (contd.)

Right Triangle #1

$$z = r \times \cos \theta = \rho \times \cot \theta = \sqrt{r^2 - \rho^2}$$

$$\rho = r \times \sin \theta = z \times \tan \theta = \sqrt{r^2 - z^2}$$

$$r = \sqrt{\rho^2 + z^2} = \rho \times \cos ec\theta = z \times \sec \theta$$

$$\theta = \tan^{-1} \left[\frac{\rho}{z} \right] = \sin^{-1} \left[\frac{\rho}{r} \right] = \cos^{-1} \left[\frac{z}{r} \right]$$

Coordinate Transformations (contd.)

Right Triangle #2

Coordinate Transformations (contd.)

Combining the results of the two triangles allows us to write each coordinate set in terms of each other

<u>Cartesian and Cylindrical</u>

Cartesian and Spherical

Coordinate Transformations

• Cylindrical and Spherical

$$\rho = r \times \sin \theta$$

$$\phi = \phi$$

$$z = r \times \cos \theta$$

$$\phi = \phi$$

$$\phi = \phi$$

$$\phi = \phi$$

Example – 1

- Say we have denoted a **point** in space (using **Cartesian** Coordinates) as P(x = -3, y = -3, z = 2).
- Let's **instead** define this **same** point using **cylindrical** coordinates ρ , ϕ , z.

$$+(-3)^2 = 3\sqrt{2}$$
 $\phi = \tan^{-1}\left[\frac{-3}{-3}\right] = 45^o$ $z = 2$

Therefore, the location of this point can **perhaps** be defined **also** as $P(\rho = 3\sqrt{2}, \phi = 45^{\circ}, z = 2).$

Q: Wait! Something has gone horribly wrong. Coordinate $\phi = 45^{\circ}$ indicates that point P is located in quadrant-I, whereas the coordinates x =-3, y =-3 tell us it is in fact in quadrant-III!

Example – 1 (contd.)

A: The problem is in the interpretation of the inverse tangent!

Remember that $0 \le \phi < 360^\circ$, so that we must do a **four quadrant** inverse tangent. Your calculator likely only does a **two quadrant** inverse tangent (i.e., $90^\circ \le \phi \le -90^\circ$), so **be careful**!

Therefore, if we **correctly** find the coordinate ϕ :

$$\phi = \tan^{-1} \left[\frac{-3}{-3} \right] = 225^{\circ}$$

The location of point P can be expressed as **either** P(x = -3, y = -3, z = 2) or $P(\rho = 3\sqrt{2}, \phi = 225^{\circ}, z = 2).$

Example – 2

Coordinate transformation on a Scalar field

• Consider the scalar field (i.e., scalar function): $g(\rho, \phi, z) = \rho^3 z \sin \phi$

rewrite this function in terms of Cartesian coordinates.

- Note that since $\rho = \sqrt{x^2 + y^2}$ $\rho^3 = (x^2 + y^2)^{3/2}$
- Now, what about $\sin \phi$?

We know that $\phi = \tan^{-1} \left[\frac{y}{x} \right]$, We might be tempted to write:

$$\sin\phi = \sin\left[\tan^{-1}\left[\frac{y}{x}\right]\right]$$

Technically correct, this is one ugly expression. We can instead turn to one of the very important right triangles that we discussed earlier Indraprastha Institute of Information Technology Delhi

ρ

V

X

Example – 2 (contd.)

From this triangle, it is apparent that:

$$\sin\phi = \frac{y}{\sqrt{x^2 + y^2}}$$

As a result, the scalar field can be written in **Cartesian** coordinates as:

$$g(x, y, z) = \left(x^{2} + y^{2}\right)^{3/2} \frac{y}{\sqrt{x^{2} + y^{2}}} z = \left(x^{2} + y^{2}\right) yz$$

Example – 2 (contd.)

<u>Although the scalar fields:</u> $g(\rho, \phi, z) = \rho^3 z \sin \phi$ <u>and</u> $g(x, y, z) = (x^2 + y^2) yz$

look very different, they are in fact **exactly** the same functions—only expressed using different **coordinate variables**.

• For example, if you evaluate each of the scalar fields at the point described earlier, you will get exactly the same result!

$$g(x = -3, y = -3, z = 2) = -108$$
$$g(\rho = 3\sqrt{2}, \phi = 225^{\circ}, z = 2) = -108$$