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• Vector Arithmetic (Review)
• Coordinate System and Transformations
• Examples 
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Vector Addition
Q: Say we add two vectors  𝐴 and 𝐵 together; what is the result?

The magnitude and direction of  𝐶 is determined by the head-to-tail rule.

This is not a provable result, rather the head-to-tail rule is the 
definition of vector addition. This definition is used because it has 

many applications in physics.

1. Vector addition is commutative:  𝐴 + 𝐵 = 𝐵 +  𝐴
Some important properties of vector addition:

2. Vector addition is associative: 𝑋 + 𝑌 +  𝑍 = 𝑋 + (𝑌 +  𝑍) = 𝐾

From these two properties, we can conclude that the addition of several 
vectors can be executed in any order

A B C 

A: The addition of two vectors results in another vector,

which we will denote as  𝐶. Therefore, we can say:

• We consider the addition of a negative vector as a subtraction.
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Vector Multiplication

• Consider a scalar quantity a and a vector quantity 𝐵. We
express the multiplication of these two values as:

aB C

In other words, the product of a scalar and a vector is a vector!

Q: OK, but what is vector  𝐶? What is the meaning of  𝐶?

→ Jut to reiterate, multiplying a vector by a scalar changes the magnitude of
the vector, but not its direction.

The direction of vector  𝐶 is exactly that of 𝐵.

C a B
A: The resulting vector  𝐶 has a magnitude that is equal to a

times the magnitude of 𝐵. In other words:
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Multiplication (contd.)
Some important properties of vector multiplication:

1. The scalar-vector multiplication is distributive:  aB bB a b B  

2. also distributive as:  aB aC a B C  

3. Scalar-Vector multiplication is also commutative: aB Ba

4. Multiplication of a vector by a negative scalar is
interpreted as:

 aB a B  

5. Division of a vector by a scalar is the same as
multiplying the vector by the inverse of the scalar:

1B
B

a a

 
  
 



Indraprastha Institute of 

Information Technology Delhi ECE230

Unit Vector
• Lets begin with vector  𝐴. Say we divide this vector by its

magnitude (a scalar value). We create a new vector, which
we will denote as  𝑎𝐴:

ˆ
A

A
a

A


A: Since we divided  𝐴 by a scalar value, the 

vector  𝑎𝐴 has the same direction as vector  𝐴. 

• But, the 
magnitude of 
 𝑎𝐴 is:

ˆ 1A

A
a

A
 

The vector  𝑎𝐴 has a magnitude equal to one! We call such a
vector a unit vector.

• A unit vector is essentially a description of direction only, as its
magnitude is always unit valued (i.e., equal to one). Therefore:

• |  𝐴|is a scalar value that describes the magnitude of vector  𝐴.

•  𝑎𝐴 is a vector that describes the direction of  𝐴. 

Q: How is vector  𝑎𝐴 related to vector  𝐴?
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The Dot Product 

• The dot product of two vectors,  𝐴 and 𝐵, is denoted as  𝐴 . 𝐵

. cos ABA B A B 

angle θAB is the angle formed between the 

vectors  𝐴 and 𝐵.

θAB

 𝐴
𝐵

. cos ABA B A B 

• Note also that the dot product is commutative: . cos ABA B A B 

• The dot product of a vector with
itself is equal to the magnitude
of the vector squared.

. .A B B A 0 AB  

• If  𝐴 . 𝐵 = 0 (and  𝐴 ≠ 0, 𝐵 ≠ 0), then it must be true that: . .A B B A

• If  𝐴 . 𝐵 = |  𝐴||𝐵|, then it must be true that:
2

. . cos0A A A A A 

• The dot product is distributive with addition: .A A A
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The Cross Product 
• The cross product of two vectors,  𝐴 and 𝐵, is denoted as  𝐴 × 𝐵.

ˆ sinn ABA B a A B  

Just as with the dot product, the angle θAB

is the angle between the vectors  𝐴 and 

𝐵.The unit vector  𝑎𝑛 is orthogonal to both 
 𝐴 and 𝐵(i.e.,  𝑎𝑛.  𝐴 =0 and  𝑎𝑛.𝐵 =0.)

0 AB  

θAB 𝐴 𝐵

 𝐴 × 𝐵

IMPORTANT NOTE: The cross product is an operation involving two
vectors, and the result is also a vector. e.g.,:

 𝐴 × 𝐵 =  𝐶

• The magnitude of vector  𝐴 × 𝐵 is therefore: sin ABA B A B  

While the direction of vector  𝐴 × 𝐵 is described by unit vector  𝑎𝑛.
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The Cross Product (contd.)

Problem! There are two unit vectors that satisfy the equations

 𝑎𝑛 .  𝐴 =0 and  𝑎𝑛 . 𝐵 =0!! These two vectors are
antiparallel.

 𝐴 𝐵

 𝑎𝑛1

 𝑎𝑛2 1 2
ˆ ˆ. . 0n nA a A a 

1 2
ˆ ˆ. . 0n nA a A a 

1 2
ˆ ˆ. . 0n nB a B a 

Q: Which unit vector is correct?

 𝐴

𝐵

 𝐴 × 𝐵

A: Use the right-hand rule
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The Cross Product (contd.)

1. If θAB = 90ο (i.e., orthogonal), then: ˆ ˆsin90n nA B a A B a A B   

2. If θAB = 0ο (i.e., parallel), then: ˆ sin0 0nA B a A B   

Note that 𝑨 × 𝑩 = 𝟎 also if θAB = 180ο.

3. The cross product is not commutative! In other words,  𝐴 × 𝐵 ≠ 𝐵 ×  𝐴.

While evaluating the cross product of two vectors, 
the order is important !

 𝐴 × 𝐵 ≠ −(𝐵 ×  𝐴)

4. The negative of the cross product is: ( ) ( )A B A B    

5. The cross product is also not associative:  A B C A B C    

6. But, the cross product is distributive, in that:      A B C A B A C     
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The Triple Product

• The triple product is not a “new” operation, as it is simply a combination
of the dot and cross products.

• For example, the triple product of vectors  𝐴 , 𝐵 , and  𝐶 is denoted as:

.A B C

Q: Yikes! Does this mean:  .A B C OR  .A B C

A: The answer is easy! Only one of these two interpretations makes sense:

 .A B C  Scalar X Vector

 .A B C  Vector . Vector

makes no sense

dot product
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P(x, y, z) 

The Position Vector 

• Consider a point whose location in space is specified with Cartesian
coordinates (e.g., P(x, y, z)). Now consider the directed distance (a vector
quantity!) extending from the origin to this point.

 𝑟

This particular directed distance—a 
vector beginning at the origin and 

extending outward to a point—is a very 
important and fundamental directed 

distance known as the position vector  𝑟

• Using the Cartesian coordinate system, the position
vector can be explicitly written as:

ˆ ˆ ˆ
x y zr xa ya za  
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The Position Vector (contd.) 
• Note that given the coordinates of some point (e.g., x =1, y =2, z =-3), we

can easily determine the corresponding position vector (e.g.,  𝑟 =  𝑎𝑥 +
2 𝑎𝑦 − 3 𝑎𝑧).

• Moreover, given some specific position vector (e.g.,  𝑟 = 4 𝑎𝑦 − 2 𝑎𝑧), we
can easily determine the corresponding coordinates of that point (e.g., x
=0, y =4, z =-2).

• In other words, a position vector  𝑟 is an alternative way to denote the
location of a point in space! We can use three coordinate values to
specify a point’s location, or we can use a single position vector  𝑟.

𝑃(  𝑟)
I see! The position vector is essentially 

a pointer. Look at the end of the 
vector, and you will find the point 

specified!
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The magnitude of  𝑟

Q: Hey, this makes perfect sense! 
Doesn’t the coordinate value r have a 
physical interpretation as the distance 

between the point and the origin?

• Note the magnitude of any and all position vectors is:

2 2 2.r r r x y z r    

A: That’s right! The magnitude of a directed distance vector is equal to the
distance between the two points—in this case the distance between the
specified point and the origin!
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The Distance Vector

𝑅1 𝑅2

𝑅12

𝑅12 = 𝑃1𝑃2 = 𝑅2 − 𝑅1

𝑑 = 𝑅12

𝑅12 = (𝑥2 − 𝑥1)  𝑎𝑥 + (𝑦2 − 𝑦1)  𝑎𝑦 + (𝑧2 − 𝑧1)  𝑎𝑧
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Example – 1
In Cartesian coordinates, Vector  𝐴 points from the origin to point 𝑃1 =

(2, 3, 3), and Vector 𝐵 is directed from 𝑃1 to point 𝑃2 = (1,−2, 2). Find:

(a) Vector  𝐴, its magnitude A, and unit vector  𝑎.

(b) The angle between  𝐴 and the y-axis.

(c) Vector 𝐵

(d) The angle 𝜃𝐴𝐵 between  𝐴 and 𝐵.

(e) Then find the angle 𝜃𝐴𝐵 from the cross product between  𝐴 and 𝐵.

(f) The perpendicular distance from the origin to Vector 𝐵

(g) Find the angle between Vector 𝐵 and the z-axis.
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Example – 2
• Find the distance vector between 𝑃1 = (1, 2, 3) and 𝑃2 = (−1,−2, 3)
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Example – 3

• Vectors  𝐴 and 𝐵 lie in the y-z plane and both have the same magnitude of

2. Determine (a)  𝐴. 𝐵 and (b)  𝐴 × 𝐵.

 𝐴

𝐵
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Example – 4

• If  𝐴. 𝐵 =  𝐴.  𝐶 then does it mean that 𝐵 =  𝐶 ? ?
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Example – 5

• Given  𝐴 =  𝑎𝑥 −  𝑎𝑦 + 2 𝑎𝑧 𝐵 =  𝑎𝑦 +  𝑎𝑧
 𝐶 = −2 𝑎𝑥 + 3 𝑎𝑧

Find (  𝐴 × 𝐵) ×  𝐶 and compare it with  𝐴 × (𝐵 ×  𝐶)
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Y-axis

X-axis

Z-axis

• Note the coordinate values in the
Cartesian system effectively
represent the distance from a plane
intersecting the origin.

• For example, x =3 means that the
point is 3 units from the y-z plane
(i.e., the x = 0 plane).

• Likewise, the y coordinate provides
the distance from the x-z (y=0)
plane, and the z coordinate provides
the distance from the x-y (z =0)
plane.

• Once all three distances are
specified, the position of a point is
uniquely identified.

Cartesian Coordinates  

P (0, 0, 0)
P (2, 3, 2.5)

2
3

2.5
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Cylindrical Coordinates 
• You’re also familiar with polar coordinates. In two dimensions, we specify

a point with two scalar values, generally called ρ and φ.

P (ρ, φ)

X-axis

Y-axis

ρ

φ

We can extend this to 3-dimensions, by adding a third 
scalar value z. This method for identifying the position of a 

point is referred to as cylindrical coordinates.

P (ρ, φ, z)

X-axis

Y-axis

Z-axis
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Cylindrical Coordinates 

Note the physical significance of each
parameter of cylindrical coordinates:
1. The value ρ indicates the distance of

the point from the z-axis (0 ≤ ρ<∞).
2. The value φ indicates the rotation

angle around the z-axis (0≤φ<2π),
precisely the same as the angle φ used
in spherical coordinates.

3. The value z indicates the distance of
the point from the x-y (z = 0) plane
(−∞<z<∞), precisely the same as the
coordinate z used in Cartesian
coordinates.

4. Once all three values are specified, the
position of a point is uniquely
identified.

Z

P (0, φ, 0)

P (3, 60ο, 2.5)3

60ο

2.5
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Spherical Coordinates 

• Geographers specify a location
on the Earth’s surface using three
scalar values: longitude, latitude,
and altitude.

• Both longitude and latitude are
angular measures, while altitude
is a measure of distance.

• Latitude, longitude, and altitude
are similar to spherical
coordinates.

• Spherical coordinates consist of
one scalar value (r), with units of
distance, while the other two
scalar values (θ, φ) have angular
units (degrees or radians).

P (r, θ, φ)

X-axis

Y-axis

Z-axis
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Spherical Coordinates 

• For spherical coordinates, r (0≤r<∞)
expresses the distance of the point
from the origin (i.e., similar to
altitude).

• Angle θ (0 ≤θ ≤π) represents the angle
formed with the z-axis (i.e., similar to
latitude).

• Angle φ (0≤φ<2π) represents the
rotation angle around the z-axis,
precisely the same as the cylindrical
coordinate φ (i.e., similar to
longitude).

P (3, 45ο, 60ο)

P (0, θ, φ)

θ = 45ο

r = 3

φ = 60ο

Thus, using spherical coordinates, a point in space can be
unambiguously defined by one distance and two angles.
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Coordinate Transformations 

• Say we know the location of a point, or the description of some scalar
field in terms of Cartesian coordinates (e.g., T (x, y, z)).

• What if we decide to express this point or this scalar field in terms of
cylindrical or spherical coordinates instead?

• We see that the coordinate values z, ρ, r, and θ are all variables of a right
triangle! We can use our knowledge of trigonometry to relate them to
each other.

• In fact, we can completely derive the relationship between all six
independent coordinate values by considering just two very important
right triangles!
• Hint: Memorize these 2 triangles!!!
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Coordinate Transformations (contd.) 

θ r

ρ

z

Right Triangle #1 
2 2cos cotz r r        

2 2sin tanr z r z       

2 2 cos secr z ec z        

1 1 1tan sin cos
z

z r r

 
        
       

     



Indraprastha Institute of 

Information Technology Delhi ECE230

Coordinate Transformations (contd.) 

Right Triangle #2 

2 2cos cotx y y        

2 2sin tany x x        

1 1 1tan sin cos
y y x

x


 

      
      

     

2 2 s cosx y x ec y ec       

ϕ

ρ
y

x X

Y
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Coordinate Transformations (contd.) 

Combining the results of the two triangles allows us to write
each coordinate set in terms of each other

• Cartesian and Cylindrical

cosx   

siny   

z z

2 2x y  

1tan
y

x
   
  

 

z z

• Cartesian and Spherical

sin cosx r    

sin siny r    

cosz r  

2 2 2r x y z  

1tan
y

x
   
  

 

1

2 2 2
cos

z

x y z
 

 
  

   
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Coordinate Transformations 

• Cylindrical and Spherical

sinr  

 

cosz r  

2 2r z 

1tan
z


   
  

 

 
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Example – 1 
• Say we have denoted a point in space (using Cartesian Coordinates) as

𝑃 𝑥 = −3, 𝑦 = −3, 𝑧 = 2 .
• Let’s instead define this same point using cylindrical coordinates 𝜌, 𝜙, 𝑧.

Therefore, the location of this point can perhaps be defined also as 

𝑃 ρ = 3 2, ϕ = 45ο, 𝑧 = 2 .

Q: Wait! Something has gone horribly 
wrong. Coordinate ϕ = 45ο indicates that 
point P is located in quadrant-I, whereas 
the coordinates x =-3, y =-3 tell us it is in 

fact in quadrant-III!

2 2( 3) ( 3) 3 2      1 3
tan 45

3

   
   

2z 
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Example – 1 (contd.) 
A: The problem is in the interpretation of the inverse tangent!

Remember that 0≤ϕ<360ο, so that we must do a four quadrant inverse
tangent. Your calculator likely only does a two quadrant inverse tangent
(i.e., 90ο≤ϕ≤−90ο), so be careful!

Therefore, if we correctly find the coordinate ϕ:
1 3

tan 225
3

   
   

The location of point P can be expressed as 
either 𝑃 𝑥 = −3, 𝑦 = −3, 𝑧 = 2 or 

𝑃 ρ = 3 2, ϕ = 225ο, 𝑧 = 2 .
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Example – 2

Coordinate transformation on a Scalar field

• Consider the scalar field (i.e., scalar function): 3( , , ) sing z z   

rewrite this function in terms of Cartesian coordinates.

• Now, what about sinϕ?

We know that 1tan
y

x
   
  

 
, We might be tempted to write:

1sin sin tan
y

x
   
   

  

• Note that since 2 2x y    
3/2

3 2 2x y  

Technically correct, this is one 
ugly expression. We can 

instead turn to one of the very 
important right triangles that 

we discussed earlier
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ϕ

ρ
y

x X

Y
Example – 2 (contd.)

From this triangle, it is apparent that:

2 2
sin

y

x y
 



As a result, the scalar field can be written in Cartesian
coordinates as:

   
3/2

2 2 2 2

2 2
( , , )

y
g x y z x y z x y yz

x y
   


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Example – 2 (contd.)

Although the scalar fields:
3( , , ) sing z z     2 2( , , )g x y z x y yz and

look very different, they are in fact exactly the same functions—only
expressed using different coordinate variables.

• For example, if you evaluate each of the scalar fields at the point
described earlier, you will get exactly the same result!

( 3 2, 225 , 2) 108g z     

( 3, 3, 2) 108g x y z      


