Lecture - 7

Date: 21.01.2016

- Vector Arithmetic (Review)
- Coordinate System and Transformations
- Examples

Vector Addition

Q: Say we add two vectors \vec{A} and \vec{B} together; what is the result?
A: The addition of two vectors results in another vector, which we will denote as \vec{C}. Therefore, we can say: $\quad \vec{A}+\vec{B}=\vec{C}$

The magnitude and direction of \vec{C} is determined by the head-to-tail rule.
This is not a provable result, rather the head-to-tail rule is the definition of vector addition. This definition is used because it has many applications in physics.

Some important properties of vector addition:

1. Vector addition is commutative: $\vec{A}+\vec{B}=\vec{B}+\vec{A}$
2. Vector addition is associative: $(\vec{X}+\vec{Y})+\vec{Z}=\vec{X}+(\vec{Y}+\vec{Z})=\vec{K}$

From these two properties, we can conclude that the addition of several vectors can be executed in any order

- We consider the addition of a negative vector as a subtraction.

Vector Multiplication

- Consider a scalar quantity a and a vector quantity \vec{B}. We express the multiplication of these two values as:

In other words, the product of a scalar and a vector is a vector!
Q: OK, but what is vector \vec{C} ? What is the meaning of \vec{C} ?
A: The resulting vector \vec{C} has a magnitude that is equal to a times the magnitude of \vec{B}. In other words:

The direction of vector \vec{C} is exactly that of \vec{B}.
\rightarrow Jut to reiterate, multiplying a vector by a scalar changes the magnitude of the vector, but not its direction.

Multiplication (contd.)

Some important properties of vector multiplication:

1. The scalar-vector multiplication is distributive: $a \vec{B}+b \vec{B}=(a+b) \vec{B}$
2. also distributive as: $a \vec{B}+a \vec{C}=a(\vec{B}+\vec{C})$
3. Scalar-Vector multiplication is also commutative: $a \vec{B}=\vec{B} a$
4. Multiplication of a vector by a negative scalar is interpreted as:

$$
-a \vec{B}=a(-\vec{B})
$$

5. Division of a vector by a scalar is the same as multiplying the vector by the inverse of the scalar:

$$
\frac{\vec{B}}{a}=\left(\frac{1}{a}\right) \vec{B}
$$

Unit Vector

- Lets begin with vector \vec{A}. Say we divide this vector by its magnitude (a scalar value). We create a new vector, which we will denote as \hat{a}_{A} :

Q: How is vector \hat{a}_{A} related to vector \vec{A} ?
A: Since we divided \vec{A} by a scalar value, the vector \hat{a}_{A} has the same direction as vector \vec{A}.

- But, the magnitude of \hat{a}_{A} is:

The vector \hat{a}_{A} has a magnitude equal to one! We call such a vector a unit vector.

- A unit vector is essentially a description of direction only, as its magnitude is always unit valued (i.e., equal to one). Therefore:
- $|\vec{A}|$ is a scalar value that describes the magnitude of vector \vec{A}.
- \hat{a}_{A} is a vector that describes the direction of \vec{A}.

The Dot Product

- The dot product of two vectors, \vec{A} and \vec{B}, is denoted as $\vec{A} \cdot \vec{B}$

$$
\vec{A} \cdot \vec{B}=|\vec{A} \| \vec{B}| \cos \theta_{A B}
$$

angle $\theta_{A B}$ is the angle formed between the vectors \vec{A} and \vec{B}.

- Note also that the dot product is commutative:

$$
\vec{A} \cdot \vec{B}=\bar{A}|\vec{A}| \overrightarrow{\vec{B}} \mid \cos \theta_{A B}
$$

- The dot product of a vector with itself is equal to the magnitude of the vector squared.

$$
\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \Rightarrow 0 \leq \theta_{A B} \leq \pi
$$

- If $\vec{A} \cdot \vec{B}=0$ (and $\vec{A} \neq 0, \vec{B} \neq 0$), then it must be true that: $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
- If $\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}|$, then it must be true that:

- The dot product is distributive with addition:

$$
|\vec{A}|=\sqrt{\vec{A} \cdot \vec{A}}
$$

The Cross Product

- The cross product of two vectors, \vec{A} and \vec{B}, is denoted as $\vec{A} \times \vec{B}$.

$$
\vec{A} \times \vec{B}=\hat{a}_{n}|\vec{A}||\vec{B}| \sin \theta_{A B}
$$

$$
0 \leq \theta_{A B} \leq \pi
$$

Just as with the dot product, the angle θ_{AB} is the angle between the vectors \vec{A} and \vec{B}. The unit vector \hat{a}_{n} is orthogonal to both
\vec{A} and $\vec{B}\left(\right.$ i.e., $\hat{a}_{n} \cdot \vec{A}=0$ and $\hat{a}_{n} \cdot \vec{B}=0$.)

IMPORTANT NOTE: The cross product is an operation involving two vectors, and the result is also a vector. e.g.,:

$$
\vec{A} \times \vec{B}=\vec{C}
$$

- The magnitude of vector $\vec{A} \times \vec{B}$ is therefore: $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta_{A B}$

While the direction of vector $\vec{A} \times \vec{B}$ is described by unit vector \hat{a}_{n}.

The Cross Product (contd.)

Problem! \longleftrightarrow There are two unit vectors that satisfy the equations $\hat{a}_{n} \cdot \vec{A}=0$ and $\hat{a}_{n} \cdot \vec{B}=0!!$ These two vectors are antiparallel.

Q: Which unit vector is corrept?
A: Use the right-hand rule

The Cross Product (contd.)

1. If $\theta_{A B}=90^{\circ}$ (i.e., orthogonal), then: $\vec{A} \times \vec{B}=\hat{a}_{n}|\vec{A}||\vec{B}| \sin 90^{\circ}=\hat{a}_{n}|\vec{A}||\vec{B}|$
2. If $\theta_{A B}=0^{\circ}$ (i.e., parallel), then:

$$
\vec{A} \times \vec{B}=\hat{a}_{n}|\vec{A} \| \vec{B}| \sin 0^{\circ}=0
$$

Note that $\vec{A} \times \vec{B}=0$ also if $\theta_{A B}=180^{\circ}$.
3. The cross product is not commutative! In other words, $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$. While evaluating the cross product of two vectors, the order is important !

$$
\vec{A} \times \vec{B} \neq-(\vec{B} \times \vec{A})
$$

4. The negative of the cross product is:

$$
-(\vec{A} \times \vec{B})=\vec{A} \times(-\vec{B})
$$

5. The cross product is also not associative:

$$
\vec{A} \times \vec{B} \times \vec{C} \neq \vec{A} \times(\vec{B} \times \vec{C})
$$

6. But, the cross product is distributive, in that:

$$
\vec{A} \times(\vec{B}+\vec{C})=(\vec{A} \times \vec{B})+(\vec{A} \times \vec{C})
$$

The Triple Product

- The triple product is not a "new" operation, as it is simply a combination of the dot and cross products.
- For example, the triple product of vectors \vec{A}, \vec{B}, and \vec{C} is denoted as:

$$
\vec{A} \cdot \vec{B} \times \vec{C}
$$

Q: Yikes! Does this mean:

$$
(\vec{A} \cdot \vec{B}) \times \vec{C} \quad \text { OR } \quad \vec{A} \cdot(\vec{B} \times \vec{C})
$$

A: The answer is easy! Only one of these two interpretations makes sense:

$$
\begin{array}{ll}
(\vec{A} \cdot \vec{B}) \times \vec{C}=\text { Scalar } \mathrm{X} \text { Vector } & \text { makes no sense } \\
\vec{A} \cdot(\vec{B} \times \vec{C})=\text { Vector . Vector } \longleftarrow & \text { dot product }
\end{array}
$$

The Position Vector

- Consider a point whose location in space is specified with Cartesian coordinates (e.g., P(x, y, z)). Now consider the directed distance (a vector quantity!) extending from the origin to this point.

$$
\bar{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}
$$

The Position Vector (contd.)

- Note that given the coordinates of some point (e.g., $x=1, y=2, z=-3$), we can easily determine the corresponding position vector (e.g., $\bar{r}=\hat{a}_{x}+$ $2 \hat{a}_{y}-3 \hat{a}_{z}$).
- Moreover, given some specific position vector (e.g., $\bar{r}=4 \hat{a}_{y}-2 \hat{a}_{z}$), we can easily determine the corresponding coordinates of that point (e.g., x $=0, y=4, z=-2$).
- In other words, a position vector \bar{r} is an alternative way to denote the location of a point in space! We can use three coordinate values to specify a point's location, or we can use a single position vector \bar{r}.

I see! The position vector is essentially a pointer. Look at the end of the vector, and you will find the point specified!

The magnitude of \bar{r}

- Note the magnitude of any and all position vectors is:

$$
|\bar{r}|=\sqrt{\bar{r} \cdot \bar{r}}=\sqrt{x^{2}+y^{2}+z^{2}}=r
$$

Q: Hey, this makes perfect sense!
Doesn't the coordinate value r have a physical interpretation as the distance
between the point and the origin?

A: That's right! The magnitude of a directed distance vector is equal to the distance between the two points-in this case the distance between the specified point and the origin!

The Distance Vector

Example - 1

In Cartesian coordinates, Vector \vec{A} points from the origin to point $P_{1}=$ $(2,3,3)$, and Vector \vec{B} is directed from P_{1} to point $P_{2}=(1,-2,2)$. Find:
(a) Vector \vec{A}, its magnitude A , and unit vector \hat{a}.
(b) The angle between \vec{A} and the y-axis.
(c) Vector \vec{B}
(d) The angle $\theta_{A B}$ between \vec{A} and \vec{B}.
(e) Then find the angle $\theta_{A B}$ from the cross product between \vec{A} and \vec{B}.
(f) The perpendicular distance from the origin to Vector \vec{B}
(g) Find the angle between Vector \vec{B} and the z -axis.

Example - 2

- Find the distance vector between $P_{1}=(1,2,3)$ and $P_{2}=(-1,-2,3)$

Example - 3

- Vectors \vec{A} and \vec{B} lie in the y-z plane and both have the same magnitude of 2. Determine (a) $\vec{A} \cdot \vec{B}$ and (b) $\vec{A} \times \vec{B}$.

Example-4

- If $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}$ then does it mean that $\vec{B}=\vec{C}$??

Example-5

- Given $\vec{A}=\hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z} \quad \vec{B}=\hat{a}_{y}+\hat{a}_{z} \quad \vec{C}=-2 \hat{a}_{x}+3 \hat{a}_{z}$ Find $(\vec{A} \times \vec{B}) \times \vec{C}$ and compare it with $\vec{A} \times(\vec{B} \times \vec{C})$

Cartesian Coordinates

- Note the coordinate values in the Cartesian system effectively represent the distance from a plane intersecting the origin.
- For example, $x=3$ means that the point is 3 units from the $y-z$ plane (i.e., the $x=0$ plane).
- Likewise, the y coordinate provides the distance from the $x-z \quad(y=0)$ plane, and the z coordinate provides the distance from the $x-y(z=0)$ plane.
- Once all three distances are specified, the position of a point is
 uniquely identified.

Cylindrical Coordinates

- You're also familiar with polar coordinates. In two dimensions, we specify a point with two scalar values, generally called ρ and ϕ.

We can extend this to 3-dimensions, by adding a third scalar value z. This method for identifying the position of a point is referred to as cylindrical coordinates.

Cylindrical Coordinates

Note the physical significance of each parameter of cylindrical coordinates:

1. The value ρ indicates the distance of the point from the \mathbf{z}-axis $(0 \leq \rho<\infty)$.
2. The value $\boldsymbol{\phi}$ indicates the rotation angle around the z-axis ($0 \leq \phi<2 \pi$), precisely the same as the angle ϕ used in spherical coordinates.
3. The value z indicates the distance of the point from the $x-y(z=0)$ plane $(-\infty<z<\infty)$, precisely the same as the coordinate z used in Cartesian coordinates.
4. Once all three values are specified, the position of a point is uniquely identified.

Spherical Coordinates

- Geographers specify a location on the Earth's surface using three scalar values: longitude, latitude, and altitude.
- Both longitude and latitude are angular measures, while altitude is a measure of distance.
- Latitude, longitude, and altitude are similar to spherical coordinates.
- Spherical coordinates consist of one scalar value (r), with units of distance, while the other two scalar values (θ, ϕ) have angular units (degrees or radians).

Spherical Coordinates

- For spherical coordinates, $r(0 \leq r<\infty)$ expresses the distance of the point from the origin (i.e., similar to altitude).
- Angle $\theta(0 \leq \theta \leq \pi)$ represents the angle formed with the \mathbf{z}-axis (i.e., similar to latitude).
- Angle $\phi(0 \leq \phi<2 \pi)$ represents the rotation angle around the z -axis, precisely the same as the cylindrical coordinate ϕ (i.e., similar to longitude).

Thus, using spherical coordinates, a point in space can be unambiguously defined by one distance and two angles.

Coordinate Transformations

- Say we know the location of a point, or the description of some scalar field in terms of Cartesian coordinates (e.g., $T(x, y, z)$).
- What if we decide to express this point or this scalar field in terms of cylindrical or spherical coordinates instead?
- We see that the coordinate values $\boldsymbol{z}, \boldsymbol{\rho}, \boldsymbol{r}$, and $\boldsymbol{\theta}$ are all variables of a right triangle! We can use our knowledge of trigonometry to relate them to each other.
- In fact, we can completely derive the relationship between all six independent coordinate values by considering just two very important right triangles!
- Hint: Memorize these $\mathbf{2}$ triangles!!!

Coordinate Transformations (contd.)

Right Triangle \#1

$$
z=r \times \cos \theta=\rho \times \cot \theta=\sqrt{r^{2}-\rho^{2}}
$$

$$
\rho=r \times \sin \theta=z \times \tan \theta=\sqrt{r^{2}-z^{2}}
$$

$$
r=\sqrt{\rho^{2}+z^{2}}=\rho \times \operatorname{cosec} \theta=z \times \sec \theta
$$

$$
\theta=\tan ^{-1}\left[\frac{\rho}{z}\right]=\sin ^{-1}\left[\frac{\rho}{r}\right]=\cos ^{-1}\left[\frac{z}{r}\right]
$$

Coordinate Transformations (contd.)

Right Triangle \#2

$$
\begin{aligned}
& x=\rho \times \cos \phi=y \times \cot \phi=\sqrt{\rho^{2}-y^{2}} \\
& y=\rho \times \sin \phi=x \times \tan \phi=\sqrt{\rho^{2}-x^{2}}
\end{aligned}
$$

$$
\rho=\sqrt{x^{2}+y^{2}}=x \times \sec \phi=y \times \operatorname{cosec} \phi
$$

$$
\phi=\tan ^{-1}\left[\frac{y}{x}\right]=\sin ^{-1}\left[\frac{y}{\rho}\right]=\cos ^{-1}\left[\frac{x}{\rho}\right]
$$

Coordinate Transformations (contd.)

Combining the results of the two triangles allows us to write each coordinate set in terms of each other

- Cartesian and Cylindrical

$$
\begin{gathered}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left[\frac{y}{x}\right] \\
z=z
\end{gathered}
$$

$$
\begin{aligned}
& x=\rho \times \cos \phi \\
& y=\rho \times \sin \phi \\
& z=z
\end{aligned}
$$

- Cartesian and Spherical

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\cos ^{-1}\left[\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right] \\
\phi=\tan ^{-1}\left[\frac{y}{x}\right] \\
\begin{array}{c}
x=r \times \sin \theta \times \cos \phi \\
y=r \times \sin \theta \times \sin \phi \\
z=r \times \cos \theta
\end{array}
\end{gathered}
$$

Coordinate Transformations

- Cylindrical and Spherical

$$
\begin{gathered}
\rho=r \times \sin \theta \\
\phi=\phi \\
z=r \times \cos \theta
\end{gathered}
$$

$$
\begin{gathered}
r=\sqrt{\rho^{2}+z^{2}} \\
\theta=\tan ^{-1}\left[\frac{\rho}{z}\right] \\
\phi=\phi
\end{gathered}
$$

Example - 1

- Say we have denoted a point in space (using Cartesian Coordinates) as $P(x=-3, y=-3, z=2)$.
- Let's instead define this same point using cylindrical coordinates ρ, ϕ, z.

$$
\rho=\sqrt{(-3)^{2}+(-3)^{2}}=3 \sqrt{2} \quad \phi=\tan ^{-1}\left[\frac{-3}{-3}\right]=45^{\circ} \quad \quad z=2
$$

Therefore, the location of this point can perhaps be defined also as

$$
P\left(\rho=3 \sqrt{2}, \phi=45^{\circ}, z=2\right)
$$

Q: Wait! Something has gone horribly wrong. Coordinate $\phi=45^{\circ}$ indicates that point P is located in quadrant-I, whereas the coordinates $x=-3, y=-3$ tell us it is in
fact in quadrant-III!

Example - 1 (contd.)

A: The problem is in the interpretation of the inverse tangent!
Remember that $0 \leq \phi<360^{\circ}$, so that we must do a four quadrant inverse tangent. Your calculator likely only does a two quadrant inverse tangent (i.e., $90^{\circ} \leq \phi \leq-90^{\circ}$), so be careful!

Therefore, if we correctly find the coordinate $\phi: \phi=\tan ^{-1}\left[\frac{-3}{-3}\right]=225^{\circ}$

The location of point P can be expressed as either $P(x=-3, y=-3, z=2)$ or $P\left(\rho=3 \sqrt{2}, \phi=225^{\circ}, z=2\right)$.

Example-2

Coordinate transformation on a Scalar field

- Consider the scalar field (i.e., scalar function): $g(\rho, \phi, z)=\rho^{3} z \sin \phi$ rewrite this function in terms of Cartesian coordinates.
- Note that since $\rho=\sqrt{x^{2}+y^{2}}$

$$
\rho^{3}=\left(x^{2}+y^{2}\right)^{3 / 2}
$$

- Now, what about $\sin \phi$?

We know that $\phi=\tan ^{-1}\left[\frac{y}{x}\right]$, We might be tempted to write:

$$
\sin \phi=\sin \left[\tan ^{-1}\left[\frac{y}{x}\right]\right]
$$

Technically correct, this is one ugly expression. We can instead turn to one of the very important right triangles that we discussed earlier

Example - 2 (contd.)

From this triangle, it is apparent that:

$$
\sin \phi=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

As a result, the scalar field can be written in Cartesian

 coordinates as:$$
g(x, y, z)=\left(x^{2}+y^{2}\right)^{3 / 2} \frac{y}{\sqrt{x^{2}+y^{2}}} z=\left(x^{2}+y^{2}\right) y z
$$

Example - 2 (contd.)

Although the scalar fields: $g(\rho, \phi, z)=\rho^{3} z \sin \phi$ and $g(x, y, z)=\left(x^{2}+y^{2}\right) y z$ look very different, they are in fact exactly the same functions-only expressed using different coordinate variables.

- For example, if you evaluate each of the scalar fields at the point described earlier, you will get exactly the same result!

