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Lecture – 24 and 25 Date: 11.04.2016

• Wave Polarization
• Incidence, Reflection, and Transmission of Plane

Waves
• Reflection of Plane Wave at Oblique Incidence (Snells’

Law, Brewster’s Angle, Parallel Polarization,
Perpendicular Polarization etc.)
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General Relations Between 𝑬 and 𝑯
• We learnt earlier that if  𝑎𝐸 ,  𝑎𝐻 and

 𝑎𝑘 are unit vectors along 𝐸, 𝐻 and
the direction of propagation, then:

ˆ ˆ ˆ
k E Ha a a  ˆ ˆ ˆ

k H Ea a a   ˆ ˆ ˆ
E H ka a a 

• In general it can be deduced that:
1
ˆ

s k sH a E


  ˆ
s k sE a H  

• Furthermore, a uniform plane wave travelling in the + 𝑎𝑧 direction may
have both 𝑥 − and 𝑦 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.

• In such a scenario: ˆ ˆ( ) ( )s x sx y syE a E z a E z  

• The associated magnetic field will be: ˆ ˆ( ) ( )s x sx y syH a H z a H z  

• The exact expression of magnetic
field in terms of electric field will be:

( )1 ( )
ˆ ˆ ˆsy sx

s z s x y

E z E z
H a E a a

  

 

    

• Thus:
( )sy

xs

E z
H





  
( )

( ) sx
ys

E z
H z




 
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General Relations Between 𝑬 and 𝑯 (contd.)

𝐻𝑠𝑥
+

𝐻𝑠𝑦
+

𝐸𝑠𝑦
+

𝐸𝑠𝑥
+

𝐸

𝐻

In general, a TEM wave may have an electric field in any direction in the 
plane orthogonal to the direction of wave travel, and the associated 

magnetic field is also in the same plane with appropriate magnitude and 
direction. 
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Wave Polarization
• Very important concept considering its use in energy transmission of

waves and its applications in the design of components such as Antenna.
• The 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 of a uniform plane wave describes the locus traced by

the tip of the 𝐸 vector (in the phase orthogonal to the direction of
propagation) at a given point in space as a function of time.

• In the most general case, the locus of tip of 𝐸 is an ellipse, and wave is
said to be 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑.

• Under certain conditions, the ellipse may degenerate into a circle or a
straight line, in which case the 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 is called 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 or
𝑙𝑖𝑛𝑒𝑎𝑟 respectively.

ˆ ˆ( ) ( )s x sx y syE a E z a E z  
• Hence, in the most general case, the electric

field phasor may consist of an 𝑥 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
and a 𝑦 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡.

• We know that the 𝑧 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡s of the electric and magnetic fields of
a 𝑧 − 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑛𝑔 plane wave are both zero.
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Wave Polarization (contd.)

• With:
0( ) j z

sx xE z E e  0( ) j z

sy yE z E e 

Where, 𝐸𝑥0 and 𝐸𝑦0 are the amplitudes of 

𝐸𝑠𝑥(𝑧) and 𝐸𝑠𝑦(𝑧) respectively. 

• The amplitudes 𝐸𝑥0 and 𝐸𝑦0 are, in general, complex quantities → each

characterized by phase and magnitude.
• The phase of a wave is defined relative to a reference state, such as 𝑧 = 0,

and 𝑡 = 0 or any other combination of 𝑧 and 𝑡.
• Essentially, the polarization of wave depends on phase of 𝐸𝑦0 relative to

that of 𝐸𝑥0 and not the absolute phases of 𝐸𝑥0 and 𝐸𝑦0.

• Therefore, for convenience, let us assign a phase of zero to 𝐸𝑥0 and
denote the phase of 𝐸𝑦0, relative to that of 𝐸𝑥0, as 𝛿𝑝.

• Accordingly:
0x xE A

0
pj

y yE A e



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Wave Polarization (contd.)

Where, 𝐴𝑥 = |𝐸𝑥0| ≥ 0 and 𝐴𝑦 = |𝐸𝑦0| ≥ 0 are 

the magnitudes of 𝐸𝑥0 and 𝐸𝑦0 respectively. 

Thus by definition, 𝐴𝑥 and 𝐴𝑦 may not assume negative values. 

• Therefore, the electric field phasor is:

ˆ ˆ( ) ( ) ( )s sx x sy yE z E z a E z a   ˆ ˆ( ) pj j z
s x x y yE z a A a A e e

  

0x xE A
0

pj

y yE A e




• The corresponding instantaneous field is:

 ( , ) Re ( ) j t
sE z t E z e     ˆ ˆ( , ) cos cosx x y y pE z t a A t z a A t z        

• An electric field at a given point in space is characterized by its magnitude
and direction.

• The magnitude of 𝐸(𝑧, 𝑡) is:
1/2

2 2 2 2( , ) cos ( ) cos ( )x y pE z t A t z A t z          
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Wave Polarization (contd.)
• At a specific position 𝑧, the direction of 𝐸(𝑧, 𝑡) is

characterized by its 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝜓 with
respect to the x-axis:

1
( , )

( , ) tan
( , )

y

x

E z t
z t

E z t
   

  
 

Linear Polarization
• Wave is said to be linearly polarized if for a fixed 𝑧, the tip of 𝐸(𝑧, 𝑡) traces

a straight line segment as a function of time ↔ happens when 𝐸𝑥(𝑧, 𝑡)

and 𝐸𝑦(𝑧, 𝑡) are 𝑖𝑛 − 𝑝ℎ𝑎𝑠𝑒 (𝛿𝑝 = 0) or out − of − 𝑝ℎ𝑎𝑠𝑒 𝛿𝑝 = 𝜋 .

   ˆ ˆ(0, ) cosx x y yE t a A a A t z   

In-phase

   ˆ ˆ(0, ) cosx x y yE t a A a A t z   

Out-of-phase

• Under these conditions: 

• Let us assume out − of − 𝑝ℎ𝑎𝑠𝑒 case:

1/2
2 2( , ) cos( )x yE z t A A t z     

1( , ) tan
y

x

A
z t

A
 

 
  

 
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Linear Polarization (contd.)

• The trace would be the same over
any other value of 𝑧 as well.

• At 𝑧 = 0, 𝑡 = 0:

1/2
2 2(0,0) x yE A A   

𝐴𝑦

−𝐴𝑦

𝐴𝑥
−𝐴𝑥

• Following figure displays the line segment traced by the tip of 𝐸 at 𝑧 = 0
over half a cycle.

• The length of the vector representing

𝐸(0, 𝑡) decreases to zero at 𝜔𝑡 = 𝜋/2.

In the second quadrant of the 
𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒 at 𝜔𝑡 = 𝜋.

1/2
2 2(0, ) x yE t A A   

• The vector then reverses direction and
increases in magnitude to:

• We note that 𝜓 is independent of both 𝑧 and 𝑡.
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Linear Polarization (contd.)
• Since 𝜓 is independent of both 𝑧 and 𝑡, 𝐸(𝑧, 𝑡) maintains a direction along

the line making an angle 𝜓 with the 𝑥 − 𝑎𝑥𝑖𝑠, while oscillating back and
forth across the origin.

• If 𝐴𝑦 = 0, then 𝜓 = 0 or 180°, and the wave is 𝑥 − 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑.

• If 𝐴𝑥 = 0, then 𝜓 = 90° or −90°, and the wave is y − 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑.

Circular Polarization 
• Let us consider the special case when 𝐴𝑥 = 𝐴𝑦 and 𝛿𝑝 = ±𝜋/2.

• For reasons that will become evident shortly, the wave polarization is
called 𝑙𝑒𝑓𝑡 − ℎ𝑎𝑛𝑑 polarized when 𝛿𝑝 = 𝜋/2 , and 𝑟𝑖𝑔ℎ𝑡 − ℎ𝑎𝑛𝑑

polarized when 𝛿𝑝 = −𝜋/2.

Left-Hand Circular Polarization (LHCP) 

• For 𝐴𝑥 = 𝐴𝑦 = 𝐴 and 𝛿𝑝 = 𝜋/2 , the electric field phasor and

instantaneous electric field become:

   /2ˆ ˆ ˆ ˆ( ) j j z j z
s x y x yE z a A a Ae e A a ja e      
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     ˆ ˆ ˆ ˆ( , ) cos cos cos sin
2

x y x yE z t a A t z a A t z a A t z a A t z


       
 

         
 

• The corresponding magnitude and
inclination angle are: ( , )E z t A  ( , )z t t z    

Left-Hand Circular Polarization (LHCP) (contd.) 

• Apparently the magnitude of 𝐸 is independent of both 𝑧 and 𝑡, whereas 𝜓
depends on both variables → these functional dependencies are converse
of those for the 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 case.

• At 𝑧 = 0, the inclination angle 𝜓 = −𝜔𝑡.
• The negative sign implies that the inclination angle decreases with the

increase in time.
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Left-Hand Circular (LHC) Polarization (contd.) 

• As seen in the figure, the tip of

𝐸(𝑡) traces a circle in 𝑥 −
𝑦 𝑝𝑙𝑎𝑛𝑒 and rotates in
clockwise direction as a
function of time (when viewing
the wave approaching).

• Such a wave is called 𝑙𝑒𝑓𝑡 −
ℎ𝑎𝑛𝑑 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑙𝑦 polarized.

When the thumb of the left hand points along the direction of 
propagation (the 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 in this case), the other four 

fingers point in the direction of rotation of 𝐸.

𝐴

𝐴
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Right-Hand Circular Polarization (RHCP)

• For 𝐴𝑥 = 𝐴𝑦 = 𝐴 and 𝛿𝑝 = −𝜋/2, we get: ( , )E z t A  ( , )z t t z   

• The trace of 𝐸(𝑡) as a function of time is:

𝐴

𝐴

For 𝑅𝐻𝐶𝑃, the fingers of the right 
hand point in the direction of  

rotation of 𝐸 when the thumb 
point in the direction of 

propagation.
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Example – 1

• An RHC polarized plane wave with electric field magnitude of 3 𝑚𝑉/𝑚 is
traveling in the +𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 in a dielectric medium with 𝜀 = 4𝜀0, 𝜇 =
𝜇0 and 𝜎 = 0. If the frequency is 100MHz, obtain the expression for

𝐸(𝑦, 𝑡) and 𝐻(𝑦, 𝑡).

𝐸

• Let us assign the z-component of 𝐸𝑠(𝑦)
a phase angle of zero and the x-

component a phase shift of 𝛿𝑝 = −
𝜋

2
.

• Then:

 ˆ ˆ( ) j y
s x sx z szE y a E a E e  

 /2ˆ ˆ( ) 3 j j y
s x zE y a e a e    mV/m

 ˆ ˆ( ) 3 j y
s x zE y ja a e     mV/m
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Example – 1 (contd.)

• Similarly: 1
ˆ( ) ( )s y sH y a E y


     

3
ˆ ˆ( ) j y

s x zH y a ja e 



  mA/m

• The instantaneous fields are:

 ˆ ˆ( , ) Re ( ) Re 3j t j y j t

s x zE y t E y e ja a e e          
mV/m

 ˆ ˆ( , ) 3 sin( ) cos( )x zE y t a t y a t y        mV/m

 
3

ˆ ˆ( , ) Re ( ) Rej t j y j t

s x zH y t H y e a ja e e  



 
     

 
mA/m

 
3

ˆ ˆ( , ) cos( ) sin( )x zH y t a t y a t y   


     mA/m
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Wave Incidence 
• For many applications, [such as fiber

optics, wire line transmission, wireless
transmission], it’s necessary to know
what happens to a wave when it meets
a different medium.

• How much is transmitted?
• How much is reflected back?

 Normal incidence: Wave arrives at 0o

from normal

 Oblique incidence: Wave arrives at another 
angle
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x

zy

Reflection at Normal Incidence 

Medium 1
e1, s1 , m1

Medium 2

e2, m2, s2

Ei

Hi
ak

Incident wave

z=0

Et

Ht

ak

Transmitted wave

Er

Hr

Reflected wave

akr
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Reflection at Normal Incidence (contd.) 

Incident wave

Ei

Hi
ak

Incident wave

1 ˆ( ) z
is io xE z E e a

1 1

1

ˆ ˆ( ) z zio
is io y y

E
H z H e a e a 



  

Reflected wave

Er

Hr

Reflected wave

akr

1 ˆ( ) z
rs ro xE z E e a

 1 1

1

ˆ ˆ( ) z zro
rs ro y y

E
H z H e a e a 


   

Transmitted wave

Et

Ht

ak

Transmitted wave

2 ˆ( ) z
ts to xE z E e a

2 2

2

ˆ ˆ( ) z zto
ts to y y

E
H z H e a e a 



  
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Reflection at Normal Incidence (contd.) 

• The total waves in medium 1: 1 i rE E E  1 i rH H H 

• The total waves in medium 2: 2 tE E 2 tH H

• At the interface 𝑧 = 0, the boundary conditions require that the tangential 

components of 𝐸 and 𝐻 fields must be continuous.

• Since the waves are transverse, 𝐸 and 𝐻 fields are entirely tangential to the 
surface. 

io ro toE E E 

 
1 2

1 to
io ro

E
E E

 
 

(0) (0) (0)is rs tsE E E 

(0) (0) (0)is rs tsH H H 

• Therefore, at 𝑧 = 0: 𝐸1𝑡𝑎𝑛 = 𝐸2𝑡𝑎𝑛 and 𝐻1𝑡𝑎𝑛 = 𝐻2𝑡𝑎𝑛 imply that -



Indraprastha Institute of 

Information Technology Delhi ECE230

Reflection at Normal Incidence (contd.) 

• Simplification 
results in:

2 1

2 1

ro ioE E
 

 





2

2 1

2
to ioE E



 




These expressions aid us in the definitions of 
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 Γ and 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝜏.

2 1

2 1

ro

io

E

E

 

 


  

 ro ioE E 

2

2 1

2to

io

E

E




 
 


to ioE E

• It is important to note that:

• 1 + Γ = 𝜏
• Both Γ and 𝜏 are dimensionless and may be complex 
• 0 ≤ |Γ| ≤ 1
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Reflection at Normal Incidence (contd.) 

• Therefore the total
fields in the two
medium are:

1 1
1 ˆz z

s io xE E e e a     
1 1

1

1

ˆz zio
s y

E
H e e a 



    

2
2 ˆz

s io xE E e a  2
2

2

ˆzio
s y

E
H e a





• Special Cases:
• η1 = η2 Γ = 0 𝜏 = 1 (total transmission, no reflection)

• η1 = 0 Γ = 1 𝜏 = 2 (total reflection, no inversion of 𝐸 )

• η2 = 0 Γ = −1 𝜏 = 0 (total reflection, inversion of 𝐸)                                                        
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Reflection at Normal Incidence (contd.) 

Special Case – I

• Medium 1: perfect dielectric (lossless): 𝜎1 = 0, η1=
𝜇1

𝜀1
, 𝛼1 = 0, 𝛾 = 𝑗𝛽1

• Medium 2: perfect conductor: 𝜎2 = ∞, η2=0, 𝛼2 = 𝛽2 = ∞

η2 = 0 Γ = −1 𝜏 = 0 (total reflection, inversion of 𝐸

2
2 ˆ 0z

s io xE E e a  
2

2

2

ˆ 0zio
s y

E
H e a



 

 1 1
1 ˆj z j z

s io xE E e e a    1 1
ˆ2 sins io xE jE za 1s is rsE E E 

1 1
1

1

ˆz zio
s y

E
H e e a 



     1 1

1

2
ˆcosio

s y

E
H za



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Reflection at Normal Incidence (contd.) 

• The instantaneous electric field:  1 1 1
ˆ( , ) Re 2 sin sinj t

s io xE z t E e E z ta   

• Similar steps result in: 1 1

1

2
ˆ( , ) cos cosio

y

E
H z t z ta 




Note that the position dependence of the instantaneous electric and 
magnetic fields is not a function of time → standing wave!!!

It is expected considering that there is total reflection and in a lossless 

dielectric the waves consist of two travelling waves (𝐸𝑖 𝑎𝑛𝑑 𝐸𝑟) of equal 
amplitudes but in opposite directions. 
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 1 1 1
ˆ( , ) Re 2 sin sinj t

s io xE z t E e E z ta   

Standing waves 𝐸 = 2𝐸𝑖𝑜𝑠𝑖𝑛𝛽1𝑧𝑠𝑖𝑛𝜔𝑡  𝑎𝑥. The curves 0, 1, 2, 3, 4, . . ., are, 
respectively, at times t  0, T/8, T/4, 3T/8, T/2, . . . ; l  2/1. 

The wave 
doesn’t travel 
but oscillate

Reflection at Normal Incidence (contd.) 
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Reflection at Normal Incidence (contd.) 

• The locations of the minimums (nulls) and maximums (peaks) in the
standing wave electric field pattern are found by:

1
min

( , ) 0E z t 
when

1sin 0z  1( )z n  

1

1 2

n n
z

 l


   

1
max

( , ) 2 ioE z t E
when

1sin 1z 
1( ) (2 1)

2
z n


   

1

1

(2 1) (2 1)

42
2

n n
z


l



l

 
   

 
 
 
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Special Case – II: Two Perfect Dielectrics

• Medium 1: perfect dielectric (lossless): 𝜎1 = 0, η1=
𝜇1

𝜀1
, 𝛼1 = 0, 𝛾 = 𝑗𝛽1

• Medium 2: perfect dielectric (lossless): 𝜎2 = 0, η2=
𝜇2

𝜀2
, 𝛼2 = 0, 𝛾 = 𝑗𝛽2

Reflection at Normal Incidence (contd.) 

2 1

2 1

 

 


 

If η2 > η1 𝟎 < 𝚪 < 𝟏
2

2 1

2


 


 𝟏 < 𝛕 < 𝟐

2 1

2 1

 

 


 

If η2 < η1 −𝟏 < 𝚪 < 𝟎
2

2 1

2


 


 𝟎 < 𝛕 < 𝟏
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Reflection at Normal Incidence (contd.) 

1 1 1 12
1 ˆ ˆ( ) (1 )j z j z j z j z

s io x io xE E e e a E e e a           

1 1 12
1

1 1

ˆ ˆ( ) (1 )j z j z j zio io
s y y

E E
H e e a e a  

 

       

2 2
2 ˆ ˆj z j z

s io x io xE E e a E e a     2 2
2

2 2

ˆ ˆj z j zio io
s y y

E E
H e a e a 

 

  

• Therefore:

Standing wave exists only in medium 1. 

• The magnitude of the electric field in medium 1 can be analyzed to
determine the locations of the maximum and minimum values of the
electric field standing wave pattern.

12
1 (1 )j z

s ioE E e    12

1(1 ) 1 0 2j ze z       

This can be described in the complex plane using 
𝑐𝑟𝑎𝑛𝑘 𝑑𝑖𝑎𝑔𝑟𝑎𝑚
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• The distance from the origin to the
respective point on the circle in the
crank diagram represents the
magnitude of:

121 j ze  

• If η2 > η1, (Γ is positive), then the maximum and minimum of the
function are:

12

max
(1 ) 1j ze     

when
 12 ( ) 2z n  

1

1 2

n n
z

 l


   

12

min
(1 ) 1j ze     

when
 12 ( ) 2 1z n    1

1

(2 1) (2 1)

4

n n
z


l



 
   

Reflection at Normal Incidence (contd.) 

 1
max

1s ioE E    1
min

1s ioE E  
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Reflection at Normal Incidence (contd.) 

• If η2 > η1 then Γ is negative.
• The positions of the maximums and minimums

are reversed, but the equations for the
maximum and minimum electric field
magnitude in terms of |Γ| are the same.

 1
max

1s ioE E  

 1
min

1s ioE E  
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Reflection at Normal Incidence (contd.) 

• The standing wave ratio (s) in a medium where
standing waves exist is defined as the ratio of
the maximum electric field magnitude to the
minimum electric field magnitude.

1
max

1
min

1

1

s

s

E
s

E

 
 

 

• The standing wave ratio (purely real) ranges from a
minimum value of 1 (no reflection, Γ = 0) to ∞ (total
reflection, Γ =1).

• The standing wave ratio is sometimes defined in dB as: 10( ) 20logs dB s

Example – 2 
• A uniform plane wave in air is normally incident on an infinite lossless

dielectric material having 𝜀 = 3𝜀0 and 𝜇 = 𝜇0. If the incident wave is 𝐸𝑖𝑠 =
10cos ωt − z  𝑎𝑦 𝑉/𝑚, find (a) 𝜔 and λ of the waves in both the

mediums, (b)𝐻𝑖𝑠 , (c) Γ and 𝜏, (d) the total electric field and time-average
power in both mediums.
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Example – 2 (contd.) 

1 1j  0
1 0

0

m
 

e
 

1 1j 

Medium 1 [z < 0] : Air
(𝜇1 = 𝜇0, 𝜀1 = 𝜀0, 𝜎1 = 0)

Medium 2 [z > 0] : Dielectric
(𝜇2 = 𝜇0, 𝜀2 = 3𝜀0, 𝜎2 = 0)

2 2j 
0 0

2

03 3

m 


e
 

2
3r r

c c
u

m e
 

𝛼1 = 0, 𝛽1 = 𝜔 𝜇0𝜀0 =
𝜔

𝑐
𝛼2 = 0, 𝛽2 = 𝜔 3𝜇0𝜀0 = 3

𝜔

𝑐

𝐸𝑖

𝐻𝑖



Indraprastha Institute of 

Information Technology Delhi ECE230

Example – 2 (contd.) 

(a) ˆ10cos( )is yE t z a 

1

1 1

2
1

u c

  


l
    rad/m

2 1

2 2

2
3 3

u c

  
 

l
    rad/m

1

1

2
2 6.28


l 


   m 2

2

2 2
3.63

3

 
l


   m

8

1 1 2 2 3 10u u      rad/sec 47.8 𝑀𝐻𝑧

1ˆ ˆ10 j zjz
is y o yE e a E e a  10ioE 

1 1 

(b) 1

0

10
ˆ ˆ ˆ( ) 0.0266

377

j z jz jzio
is x x x

E
H e a e a e a



       

 ˆ ˆRe 0.0266 0.0266cos( )jz
is x xH e a t z a     A/m
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Example – 2 (contd.) 

(c)
2 1

2 1

 

 


 



0
0

0
0

3

3









 



0.268   1 0.732    

(d) 1 1
1 ˆ( )j z j z

s io yE E e e a      1 ˆ10cos( ) 2.68cos( ) yE t z t z a     V/m

2
2 ˆj z

s o yE E e a  2 ˆ7.32cos( 3 ) yE t z a  
  V/m

The time average power density in medium 1 is due to the +z directed
incident wave and the –z directed reflected wave. The time-average power
density in medium 2 is due to the +z directed transmitted wave.

2 2

,1

1 1

ˆ ˆ( )
2 2

is rs

ave z z

E E
P a a

 
  
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Oblique Incidence – Introduction 
• One can’t expect plane waves to be incident normally on a plane in all

types of applications.
• Therefore one must consider the general problem of a plane wave

propagating along a specified axis that is arbitrarily located relative to a
rectangular coordinate system.

Where: ˆ ˆ ˆ
x x y y z za a a      ˆ ˆ ˆ

x y zr xa ya za  
2 2 2 2

x y z     

( , ) cos( . )oE r t E r t  
• The most general form of a plane wave in a

lossless media is given by:

One can deduce Maxwell’s equations in the following form:

E H m  H E e   . 0H  . 0E 

They show two things: (i) 𝐸,𝐻 and  𝛽 are 

orthogonal, (ii) 𝐸 and 𝐻 lie on the same plane



Indraprastha Institute of 

Information Technology Delhi ECE230

ˆ1 a E
H E


m 


  • The corresponding magnetic field is:

. tanx y zr x y z cons t      • Furthermore:

Ray representation of 
oblique incidence 

Wavefront representation 
of oblique incidence 

Oblique Incidence (contd.)
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Reflection at Oblique Incidence 

 𝛽𝑖

 𝛽𝑟  𝛽𝑡

• The plane defined by the propagation vector  𝛽 and a unit normal vector
 𝑎𝑛to the boundary is called the plane of incidence.

• For example, The angle between  𝛽𝑖 and  𝑎𝑛 is the angle of incidence.

cos( )i io ix iy iz iE E x y z t      

cos( )r ro rx ry rz rE E x y z t      

cos( )t to tx ty tz tE E x y z t      

Where: 𝛽𝑖 , 𝛽𝑟 and 𝛽𝑡 will have 
normal and tangential 

components to the plane of 
incidence.
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Reflection at Oblique Incidence (contd.) 

𝛽1𝑠𝑖𝑛𝜃𝑖

𝛽𝑖𝑧 = 𝛽1𝑐𝑜𝑠𝜃𝑖

𝛽1𝑠𝑖𝑛𝜃𝑟

𝛽𝑟𝑧 = 𝛽1𝑐𝑜𝑠𝜃𝑟

𝛽𝑡𝑧 = 𝛽2𝑐𝑜𝑠𝜃𝑡

𝛽2𝑠𝑖𝑛𝜃𝑡

• From boundary condition we can write: the tangential component of 𝐸
must be continuous at 𝑧 = 0.

tan tan tan( 0) ( 0) ( 0)i r tE z E z E z    

i r t      ix rx tx x      iy ry ty y     
This boundary condition
can be satisfied if:

First condition implies that the frequency 
remains unchanged. 
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Reflection at Oblique Incidence (contd.) 

• From second and third
conditions we can
write:

𝛽1𝑠𝑖𝑛𝜃𝑖 = 𝛽1𝑠𝑖𝑛𝜃𝑟 𝛽1𝑠𝑖𝑛𝜃𝑖 = 𝛽2𝑠𝑖𝑛𝜃𝑡

Where, 𝜃𝑟 is the angle of reflection and 𝜃𝑡 is 
the angle of transmission. 

• We know, for lossless media:
1 1 1  m e 2 2 2  m e

𝜃𝑖 = 𝜃𝑟
1 2 1 1

2 1 2 2

sin

sin

t

i

u

u

  m e

  m e
  

Snell’s Law1 2sin sini tn n 

𝑛1 and 𝑛2 are the 
refractive indices of the 

media
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Example – 3 
A dielectric slab with index of refraction 𝑛2 is surrounded by a medium with
index of refraction 𝑛1 as shown. If 𝜃𝑖 < 𝜃𝑐 , show that the emerging beam is
parallel to the incident beam.

1
2 1

2

sin sin
n

n
 

At the upper surface:

2
3 2

3

sin sin
n

n
 

Similarly at the lower surface:

2
3 2

1

sin sin
n

n
 

2 1
3 1 1

1 2

sin sin sin
n n

n n
  

  
    

  

The slab displaces the beam’s position but the beam’s 
direction remains unchanged. 
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Reflection at Oblique Incidence (contd.) 
• For normal incidence, the reflection and transmission coefficients Γ and 𝜏

at a boundary between two media are independent of the polarization of

the incident wave, as both the 𝐸 and 𝐻 of a normally incident plane wave
are tangential to the boundary regardless to the wave polarization.

• This is not the case for wave travelling at an angle 𝜃𝑖 ≠ 0 with respect to
the normal to the interface.

• A wave of arbitrary polarization may be described as the superposition of

two orthogonally polarized waves, one with its 𝐸 parallel to the plane of
incidence (parallel polarization or transverse magnetic (TM) polarization)

and the other with 𝐸 perpendicular to the plane of incidence
(perpendicular polarization or transverse electric (TE) polarization).
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Parallel Polarization

𝐸𝑖

𝐸𝑟
𝐸𝑡

𝐻𝑖

𝐻𝑟

𝐻𝑡

• Consider this figure: 𝐸 field lies in the xz-plane, the plane of incidence.
• It illustrates the case of “Parallel Polarization”.

• In medium 1 the incident waves 
are:

1 ( sin cos )ˆ ˆ( cos sin ) i ij x z
is io x i z iE E a a e

     
 

1 ( sin cos )

1

ˆi i
io j x z

is y

E
H e a

  



 

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1 ( sin cos )ˆ ˆ( cos sin ) r rj x z
rs ro x r z rE E a a e       

1 ( sin cos )

1

ˆr r
io j x z

rs y

E
H e a  



  

• In medium 1 the 
reflected waves are:

Parallel Polarization (contd.)

• The transmitted fields in medium 2 are given by:

2 ( sin cos )ˆ ˆ( cos sin ) t tj x z
ts to x t z tE E a a e

     
  2 ( sin cos )

2

ˆt t
to j x z

ts y

E
H e a

  



 


• We know: 𝜃𝑖 = 𝜃𝑟 and tangential components of electric and magnetic
fields are continuous at the boundary z=0.

• Therefore:

 cos cosio ro i to tE E E    
1 2

1 1
io ro toE E E

 
 
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Parallel Polarization (contd.)

• Simplification gives: 2 1
||

2 1

cos cos

cos cos

ro t i

io t i

E

E

   

   


  



2
||

2 1

2 cos

cos cos

to i

io t i

E

E

 


   
 



Fresnel’s Equations for parallel polarization

• For 𝜃𝑖 = 𝜃𝑡 = 0, we get: 2 1
||

2 1

ro

io

E

E

 

 


    



2
||

2 1

2to

io

E

E


 

 
  



• Furthermore, the expressions
for reflection coefficient and
transmission coefficient can be
written in terms of angle of

incidence.

2
2 21

2

2

cos 1 sin 1 sint t i

u

u
  

 
     

 

• In addition: || ||

cos
1

cos

t

i






 
    

 
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Parallel Polarization (contd.)
• The reflection coefficient Γ|| equals zero when there is no reflection (only

the parallel component is not reflected), and the incident angle at which
this happens is called Brewster’s Angle 𝜃𝐵||.

• The Brewster’s Angle is also known as polarizing angle.

• At this angle, the perpendicular component of 𝐸 will be reflected.
• Brewster’s concept is utilized in laser tube used in surgical procedures.

• For Brewster’s Angle,
set Γ|| = 0: 2 1 ||cos cost B       2 2 2 2

2 1 ||1 sin 1 sint B     

2 1

2 1 2
|| 2

1

2

1

sin

1

B

m e

m e


e

e




 

  
 

For a lossless and
nonmagnetic medium:

2

||
1

2

1
sin

1
B

e

e





2
||

2 1

sin B

e


e e




There is a Brewster Angle 
for any combination of 𝜀1

and 𝜀2.
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Perpendicular Polarization

𝐸𝑟

𝐻𝑟

𝐸𝑖

𝐻𝑖

𝐸𝑡

𝐻𝑡

• The 𝐸 field is perpendicular to the plane of incidence (the xz-plane).
• In this situation we get “Perpendicular Polarization”.

• Here, 𝐻 field is parallel to the plane of incidence.

1 ( sin cos )

1

ˆ ˆ( cos sin ) i i
io j x z

is x i z i

E
H a a e

   


 
  

1 ( sin cos )

2

ˆ ˆ( cos sin ) r r
ro j x z

rs x r z r

E
H a a e    



  

1 ( sin cos ) ˆi ij x z
is io yE E e a

   


1 ( sin cos ) ˆr rj x z
rs io yE E e a   
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Perpendicular Polarization (contd.)
• The transmitted fields in medium 2 are given by:

2 ( sin cos )

2

ˆ ˆ( cos sin ) t t
to j x z

ts x t z t

E
H a a e

   


 
  2 ( sin cos ) ˆt tj x z

ts to yE E e a
   



• Again, 𝜃𝑖 = 𝜃𝑟 and tangential components of electric and magnetic fields
are continuous at the boundary z=0.

• Therefore:

 io ro toE E E   
1 2

1 1
cos cosio ro i to tE E E 

 
 

• Simplification
gives:

2 1

2 1

cos cos

cos cos

ro i t

io i t

E

E

   

   



  


2

2 1

2 cos

cos cos

to i

io i t

E

E

 


   
  



Fresnel’s Equations for perpendicular polarization

• For 𝜃𝑖 = 𝜃𝑡 = 0, we get: 2 1

2 1

ro

io

E

E

 

 



    



2

2 1

2to

io

E

E


 

 
   


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Perpendicular Polarization (contd.)
• Simplification for Brewster’s Angle in Perpendicular Polarization gives:

2 1cos cosB t        2 2 2 2

2 11 sin 1 sinB t     

1 2

2 2 1
2

1

2

1

sin

1

B

m e

m e


m

m






 

  
  Brewster’s Angle doesn’t exist 

as sine of an angle is never 
greater than unity

For nonmagnetic media,
𝜇1 = 𝜇2 = 𝜇0 and therefore: 2sin B   

• If 𝜇1 ≠ 𝜇2 and 𝜀1 = 𝜀2 then:

2

1

2

1
sin

1
B

m

m

 


2

2 1

sin B

m


m m
 



Theoretically 
possible but rarely 
occurs in practice



Indraprastha Institute of 

Information Technology Delhi ECE230

Reflection at Oblique Incidence (contd.) 
• The Brewster’s Angle is also called Polarizing Angle.
• This is because if a wave composed of both the perpendicular and parallel

polarization components is incident on a nonmagnetic surface at the
Brewster angle 𝜃𝐵||, the parallel polarized component totally transmitted

into the second medium and only the perpendicularly polarized
component is reflected by the surface.

• Natural light, including sunlight and light generated by most manufactured
sources, is 𝑢𝑛𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 because it consists of equal parallel and
perpendicular rays. When they are incident upon a surface at the Brewster
angle, the reflected wave is strictly perpendicularly polarized. Hence the
surface acts as a polarizer.
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Example – 4 
• A wave in air is incident upon a soil surface at 𝜃𝑖 = 50°. If soil has 𝜀𝑟 = 4

and 𝜇𝑟 = 1, determine the following:

|| ||
   The Brewster angle


