

ECE230

Lecture – 22

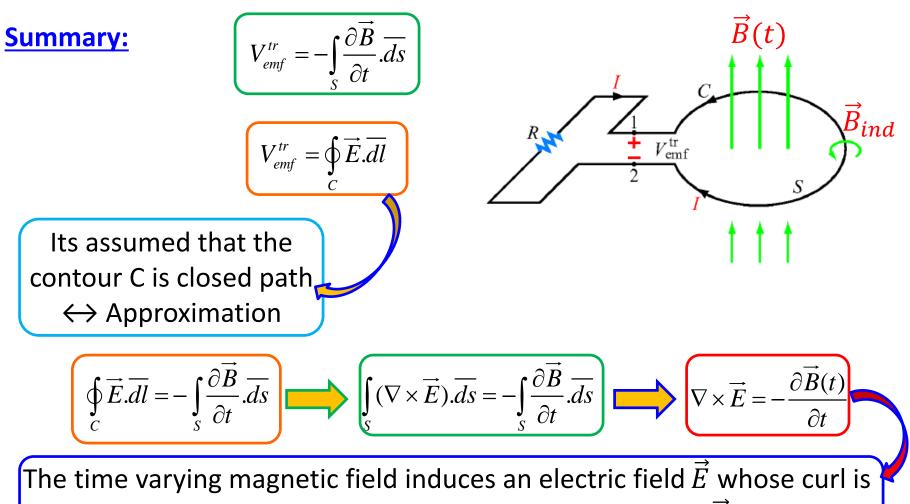
Date: 31.03.2016

- Electromagnetic Fields (Contd.)
- Displacement Current
- Maxwell's Equations
- Time Varying Potentials
- Time Harmonic Fields
- Wave Propagation in Lossy Dielectrics

Indraprastha Institute of Information Technology Delhi

ECE230

Stationary Loop in Time-Varying *B* **(contd.)**



equal to the negative of the time derivative of \vec{B} .

Moving Conductor in a Static \vec{B} (contd.)

• In general, if any segment of a closed circuit with contour C moves with a velocity \vec{u} across a static magnetic field \vec{B} , then the induced motional emf is:

$$V_{emf}^{m} = \oint_{C} \left(\vec{u} \times \vec{B} \right) . d\vec{l}$$

Only those segments of the circuit that cross magnetic field lines contribute to *motional emf*.

Moving Conductor in a Time-Varying \vec{B}

 For a general case of a single turn conducting loop moving in time-varying magnetic field, the induced *emf* is the sum of a *transformer emf* and *motional emf*.

$$V_{emf} = V_{emf}^{tr} + V_{emf}^{m}$$

$$V_{emf} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot ds + \oint_{C} \left(\vec{u} \times \vec{B} \right) \cdot dl$$

• induced *emf* also equals:

$$V_{emf} = -\frac{d\Psi}{dt} = -\frac{d}{dt} \int_{S} \vec{B} \cdot \vec{ds}$$

Both expressions are equivalent and choice between these two depends on the type of problem.

Displacement Current

You can recall that the Ampere's law in differential form is given by:

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

Integration of the above expression gives:
$$\int_{S} (\nabla \times \vec{H}) \cdot ds = \int_{S} \vec{J} \cdot ds + \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot ds$$

Sim

pplification gives:
$$\oint_C \overrightarrow{H} \cdot \overrightarrow{dl} = I_c + \int_S \frac{\partial D}{\partial t} \cdot \overrightarrow{ds}$$

Conduction Current

- The second term has the unit of current because it is proportional to the time derivative of the electric flux density \vec{D} called the electric displacement.
- This term is therefore called the *Displacement Current*, I_d .

$$I_{d} = \int_{S} \vec{J}_{d} \cdot \vec{ds} = \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot \vec{ds}$$

$$\vec{J}_{d} = \frac{\partial \vec{D}}{\partial t} \text{ is called}$$

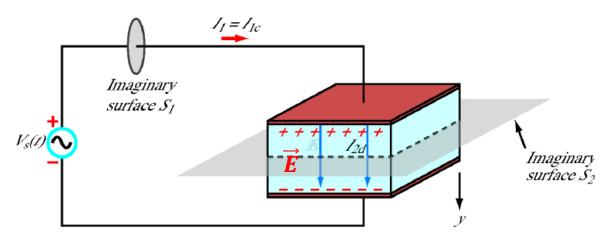
displacement current
density

Indraprastha Institute of Information Technology Delhi

Displacement Current (contd.)

• Therefore:
$$\oint_C \overrightarrow{H}.\overrightarrow{dl} = I_c + I_d = I$$
 I is the total current

- In electrostatics, $\frac{\partial \vec{D}}{\partial t} = 0$ and therefore $I_d = 0$ and $I = I_c$.
- The concept of displacement current was introduced by James Clerk Maxwell when he formulated the unified theory of electricity and magnetism under time-varying conditions.
- Let us consider the following parallel-plate capacitor to understand the physical meaning of *displacement current*.



Let us find I_c and I_d through each of the two imaginary surfaces: (1) cross section of the conducting wire, S_1 ; (2) cross section of the capacitor, S_2 .

Displacement Current (contd.)

- The simple circuit consists of a capacitor and an ac source given by:
- We know from Maxwell's hypothesis that the total current flowing through any surface consists, in general, of a conduction current and a displacement current.
- In the perfect conducting wire, $\vec{E} = \vec{D} = 0$; hence, $I_{1d} = 0$.

• As for
$$I_{1c}$$
, we know: I_{1c}

$$I_{1c} = C\frac{dV_c}{dt} = C\frac{d}{dt}(V_0\cos\omega t) = -CV_0\omega\sin\omega t$$

- With no displacement current in the wire, the total $I_1 = I_{1c} = -CV_0\omega\sin\omega t$ current in the wire is:
- Now in the perfect dielectric with permittivity ε between the capacitor plates, $\sigma = 0$.
- Therefore, $I_{2c} = 0$ because no conduction happens.

$$V_s(t) = V_0 \cos \omega t$$

Displacement Current (contd.)

• To determine I_{2d} , we need to determine \vec{E} in the dielectric spacing:

$$\vec{E} = \hat{a}_{y} \frac{V_{c}}{d} = \hat{a}_{y} \frac{V_{0}}{d} \cos \omega t$$

d is the spacing between the plates, and \hat{a}_y is the direction from the higher potential plate to the lower potential plate at t = 0.

• Therefore displacement current in the dielectric is:

- It is apparent that the expression for displacement current in the dielectric is identical to the conduction current in the wire.
- The fact that these two are equal ensures the continuity of the total current flowing through the circuit.

Displacement Current (contd.)

- Even though the displacement current doesn't transport free charges, it nonetheless behaves like a real current.
- Caution, in this example we considered the wire as perfect conductor whereas the dielectric as perfect as well.
- In practice, none of them are perfect and therefore the total current at all the time is sum of conductions and displacement currents.

Example – 1

• The conduction current flowing through a wire with conductivity $\sigma = 2 \times 10^7$ S/m and relative permittivity $\epsilon_r = 1$ is given by $I_c = 2sin\omega t \ (mA)$. If $\omega = 10^9 \frac{rad}{s}$, find the displacement current.

ECE230

Example – 2

• (a) Show that the ratio of the amplitudes of the conduction current density and displacement current density is $\frac{\sigma}{\omega\epsilon}$ for the applied field $E = E_m cos\omega t$, assume $\mu = \mu_0$. (b) What is this amplitude ratio if the applied field is $E = E_m e^{-t/\tau}$.

Maxwell's Equations

• Generalized forms of Maxwell's equations:

Differential Form	Integral Form	Remarks
$\nabla. \vec{D} = \rho_v$	$\oint_{S} \vec{D} \cdot \vec{ds} = \int_{v} \rho_{v} dv$	Gauss's Law
$\nabla . \vec{B} = 0$	$\oint_{S} \vec{B} \cdot \vec{ds} = 0$	Nonexistence of isolated magnetic charge
$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\oint_{L} \vec{E}.\vec{dl} = -\frac{\partial}{\partial t} \int_{S} \vec{B}.\vec{ds}$	Faraday's Law
$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$	$\oint_{L} \vec{H} \cdot \vec{dl} = \int_{S} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot \vec{ds}$	Ampere's Circuital Law

Maxwell's Equations (contd.)

- equations that go hand-in-hand with Other Maxwell's equations is the Lorentz force equation:
- Continuity equation is another that is closely associated with Maxwell's equations:
- The concept of linearity, isotropy, and homogeneity of a material applies to time-varying fields as well.
- In a linear, homogeneous, and isotropic medium:

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_0 \vec{E} + \vec{P} \qquad \vec{B} = \mu \vec{H} = \mu_0 \left(\vec{H} + \vec{M} \right) \qquad \vec{J} = \sigma \vec{E} + \rho_v \vec{u}$$

The boundary conditions remain valid for time-varying fields as well.

$$\vec{E}_{1t} - \vec{E}_{2t} = 0 \qquad (\vec{E}_1 - \vec{E}_2) \times \hat{a}_n = 0 \qquad \vec{H}_{1t} - \vec{H}_{2t} = K \qquad (\vec{H}_1 - \vec{H}_2) \times \hat{a}_n = \vec{K}$$
$$\vec{D}_{1n} - \vec{D}_{2n} = \rho_s \qquad (\vec{D}_1 - \vec{D}_2) \cdot \hat{a}_n = \rho_s \qquad \vec{B}_{1n} - \vec{B}_{2n} = 0 \qquad (\vec{B}_1 - \vec{B}_2) \cdot \hat{a}_n = 0$$

However, for a perfect conductor in a time-varying field:

$$\vec{E} = 0, \qquad \vec{H} = 0, \qquad \vec{J} = 0$$
 $\vec{B}_n = 0$ $\vec{E}_t = 0$

$$\vec{F} = Q\left(\vec{E} + \vec{u} \times \vec{B}\right)$$

$$\nabla . \vec{J} = -\frac{\partial \rho_v}{\partial t}$$

$$(\vec{E} + \vec{u} \times \vec{B})$$

$$\vec{J} = \sigma \vec{E} + \rho_v \vec{u}$$

Example – 3

• Electric field intensity throughout an enclosed region of free space is $E_y = A(sin20x)(sinbz)\{sin(12 \times 10^9 t)\}\frac{V}{m}$. Beginning with the $\nabla \times \vec{E}$ relationship, use Maxwell's equation to find a numerical value for b, assuming b > 0.

ECF230

Time-Varying Potentials

- For the static EM fields, the electric scalar potential was expressed as:
- Whereas, the magnetic vector potential was expressed as:

$$\vec{A} = \int_{v} \frac{\mu \vec{J} dv}{4\pi R}$$

Let us examine, what happens to these potentials when the field vary with time.

- Recall that, \vec{A} was defined from the fact that $\nabla . \vec{B} = 0$, which still holds for time-varying case. Therefore:
- We know from Faraday's Law:

• Therefore: $\nabla \times \vec{E} =$

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} \Big(\nabla \times \vec{A} \Big)$$

We know, that the curl of the gradient of a scalar field is zero:
$$\nabla \times -\nabla V = 0$$
, therefore:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t} \right) = 0$$

$$V = \int_{v} \frac{\rho_{v} dv}{4\pi\varepsilon R}$$

 $B = \nabla \times A$

Time-Varying Potentials (contd.)

Thus we can determine \vec{E} and \vec{B} provided V and \vec{A} are known.

- However, determination of V and \vec{A} require expressions that are suitable for time varying fields.
- We know that $\nabla . \vec{D} = \rho_v$ is valid for time-varying conditions. We can write:

$$\nabla \cdot \vec{E} = \frac{\rho_{v}}{\varepsilon} = -\nabla^{2}V - \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) \qquad \nabla^{2}V + \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) = -\frac{\rho_{v}}{\varepsilon}$$

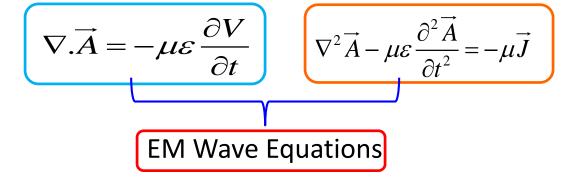
• Furthermore:
$$\nabla \times \nabla \times \vec{A} = \nabla \times \vec{B} = \mu \vec{J} + \mu \varepsilon \frac{\partial}{\partial t} \left(-\nabla V - \frac{\partial \vec{A}}{\partial t} \right) \quad \nabla \times \vec{H} = \vec{J} + \varepsilon \frac{\partial \vec{E}}{\partial t}$$
$$\nabla \times \nabla \times \vec{A} = \mu \vec{J} - \mu \varepsilon \nabla \left(\frac{\partial V}{\partial t} \right) - \mu \varepsilon \frac{\partial^{2} \vec{A}}{\partial t^{2}}$$
$$\nabla^{2} \vec{A} - \nabla \left(\nabla \cdot \vec{A} \right) = -\mu \vec{J} + \mu \varepsilon \nabla \left(\frac{\partial V}{\partial t} \right) + \mu \varepsilon \frac{\partial^{2} \vec{A}}{\partial t^{2}}$$

Time-Varying Potentials (contd.)

• We know that a vector field is uniquely defined when its curl and divergence are specified. The curl of \vec{A} has been $\nabla \cdot \vec{A} = -\mu \varepsilon$ specified as \vec{B} , therefore the divergence for \vec{A} can be expressed as:

This expression relates V and \vec{A} and is called *Loretnz condition for potentials*.

• Therefore:



- Lorentz condition uncouples and also creates symmetry between V and *A* and therefore aid the analysis of wave equations.
- Actually, V and \vec{A} satisfy *Poisson's equations* for time-varying potentials.

Time-Varying Potentials (contd.)

• From those expressions, it can be deduced that the solutions for V and \vec{A} are:

$$V = \int_{v} \frac{\left[\rho_{v}\right] dv}{4\pi\varepsilon R}$$

$$\vec{A} = \int_{v} \frac{\mu \left[\vec{J}\right] dv}{4\pi R}$$

Where $[\rho_v]$ and $[\vec{J}]$ are the retarded values. The respective V and \vec{A} are called the *retarded electric scalar potential* and the *retarded magnetic vector potential*.

• It means that the time t in $\rho_v(x, y, z, t)$ or $\vec{J}(x, y, z, t)$ is replaced by retarded time t' given by:

$$t' = t - \frac{R}{u}$$

- Where, $R = |\bar{r} \bar{r'}|$ is the distance between the source point $\bar{r'}$ and the observation point \bar{r} .
- Whereas:

 $u = \frac{1}{\sqrt{\epsilon\mu}}$ u is the velocity of wave propagation. In free space, $u = c \cong 3 \times 10^8 \ m/s$ is the speed of light in vacuum.

Example – 4

• Show that another form of Faraday's law is: $\vec{E} = -\frac{\partial \vec{A}}{\partial t}$

where \vec{A} is the magnetic vector potential.

Example – 5

• Assuming source free region, derive the diffusion equation:

$$\nabla^2 \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

Time – Harmonic Fields

- So far, our time dependence of EM fields have been arbitrary.
- Let us consider the specific scenario where the fields are time-harmonic ↔ Generally, time-varying electric and magnetic fields and their sources (ρ_v and J
) depend on spatial coordinates (x, y, z) and the time variable t. However, if their time variation is sinusoidal with angular frequency ω, then these quantities can be represented by a phasor that depends on (x, y, z) only.
- Time-harmonic field is one that varies periodically or sinusoidally with time → Sinusoidal analysis is of practical value → This can be extended to most waveforms by Fourier analysis.
- Sinusoids are easily expressed in phasors, which are more convenient to work with.
- A phasor is a complex number that contains the amplitude and phase information of a sinusoidal oscillation.

 $z = x + jy = r \angle \phi$ $z = re^{j\phi} = r(\cos \phi + j \sin \phi)$

Indraprastha Institute of Information Technology Delhi

 ω rad/s

Time – Harmonic Fields (contd.)

The two forms of representing z are illustrated below:

Im

• To introduce the time element, we let:

 $\phi = \omega t + \theta$

$$Re^{i\phi} = re^{i\theta}re^{i\omega t}$$

$$Re^{i\phi} = re^{i\theta}re^{i\omega t}$$

$$Re^{i\phi} = re^{i\theta}re^{i\omega t}$$

$$Re^{i\phi} = r\sin(\omega t + \theta)$$

- Thus a sinusoidal current $I(t) = I_0 \cos(\omega t + \theta)$ equals the real part of $I_0 e^{j\theta} e^{j\omega t}$.
- The current $I'(t) = I_0 \sin(\omega t + \theta)$, which is the imaginary part of $I_0 e^{j\theta} e^{j\omega t}$ can also be represented as the real part of $I_0 e^{j\theta} e^{j\omega t} e^{-j90^\circ}$.
- However, **be consistent** while representing the real and imaginary part of a quantity.

Time – Harmonic Fields (contd.)

- The complex term $I_0 e^{j\theta}$ which results from dropping the time factor $e^{j\omega t}$ in I(t), is called the phasor current, denoted by I_s .
- Therefore $I(t) = I_0 \cos(\omega t + \theta)$ can be expressed as:
- $I_{s} = I_{0}e^{j\theta} = I_{0}\angle\theta$

$$I(t) = \operatorname{Re}(I_{s}e^{j\omega t})$$

- In general, a phasor could be a scalar or a vector.
- If a vector $\vec{A}(x, y, z, t)$ is a time-harmonic field, then the $\vec{A} = \operatorname{Re}(\vec{A}_{s}e^{j\omega t})$ phasor form of \vec{A} is $\vec{A}_s(x, y, z)$; the two quantities are related as:
- For example, if $\vec{A} = A_0 \cos(\omega t \beta x) \hat{a}_v$, then we can express \vec{A} as:

$$\vec{A} = \operatorname{Re}\left(A_{0}e^{-j\beta x}\hat{a}_{y}e^{j\omega t}\right) = \operatorname{Re}\left(\vec{A}_{s}e^{j\omega t}\right) \qquad \text{Where:} \quad \vec{A}_{s} = A_{0}e^{-j\beta x}\hat{a}_{y}$$
Where:
$$\vec{A}_{s} = A_{0}e^{-j\beta x}\hat{a}_{y}$$
Voltage that:
$$\vec{\partial}\vec{A} \rightarrow j\omega\vec{A}_{s}$$
• Similarly:
$$\vec{\int}\vec{A}\partial t \rightarrow \frac{\vec{A}_{s}}{j\omega}$$

Time – Harmonic Fields (contd.)

• Time-Harmonic Maxwell's equations assuming time factor $e^{j\omega t}$

Differential Form	Integral Form
$\nabla.\vec{D}_s = \rho_{\nu s}$	$\oint_{S} \vec{D}_{S} \cdot \vec{dS} = \int_{v} \rho_{vS} dv$
$\nabla . \vec{B}_s = 0$	$\oint_{S} \vec{B}_{s} \cdot \vec{ds} = 0$
$\nabla \times \vec{E}_s = -j\omega \vec{B}_s$	$\oint_{L} \vec{E}_{s}. \vec{dl} =j\omega \int_{S} \vec{B}_{s}. \vec{ds}$
$\nabla \times \vec{H}_s = \vec{J}_s + j\omega \vec{D}_s$	$\oint_{L} \vec{H}_{s}. d\bar{l} = \int_{S} \left(\vec{J}_{s} + j\omega \vec{D}_{s} \right) . d\bar{s}$

ECE230

Example – 6

• Given $\vec{A} = 4sin\omega t\hat{a}_x + 3cos\omega t\hat{a}_y$ and $\vec{B}_s = j10ze^{-jz}\hat{a}_x$, express \vec{A} in phasor form and \vec{B}_s in instantaneous form.

Example – 7

• The electric field phasor of an EM wave in free space is:

$$\vec{E}_s(y) = 10e^{-j4y}\hat{a}_x$$
 V/m

Find (a) ω such that \vec{E}_s satisfies Maxwell's equations., (b) the corresponding magnetic field \vec{H}_s .

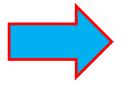
ECE230

Introduction – EM Wave Propagation

• Let us consider the Maxwell's equations in free space (i.e., $\rho_v = \vec{J} = 0$).

$$\times \vec{H} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \qquad \qquad \nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t} \qquad \qquad \nabla \cdot \vec{E} = 0 \qquad \qquad \nabla \cdot \vec{H} = 0$$

- First equation states that: If \vec{E} is changing with time at some point, then \vec{H} has curl at that point; therefore \vec{H} varies spatially in a direction normal to its orientation direction.
- Also, if \vec{E} is changing with time, then \vec{H} will in general also change with time, although not necessarily in the same way.
- Next we see from second equation: a time varying \vec{H} generates \vec{E} , which having curl, varies spatially in the direction normal to its orientation.
- We now once more have a changing \vec{E} , our original hypothesis, but this field is present at a small distance away from the point of original disturbance.



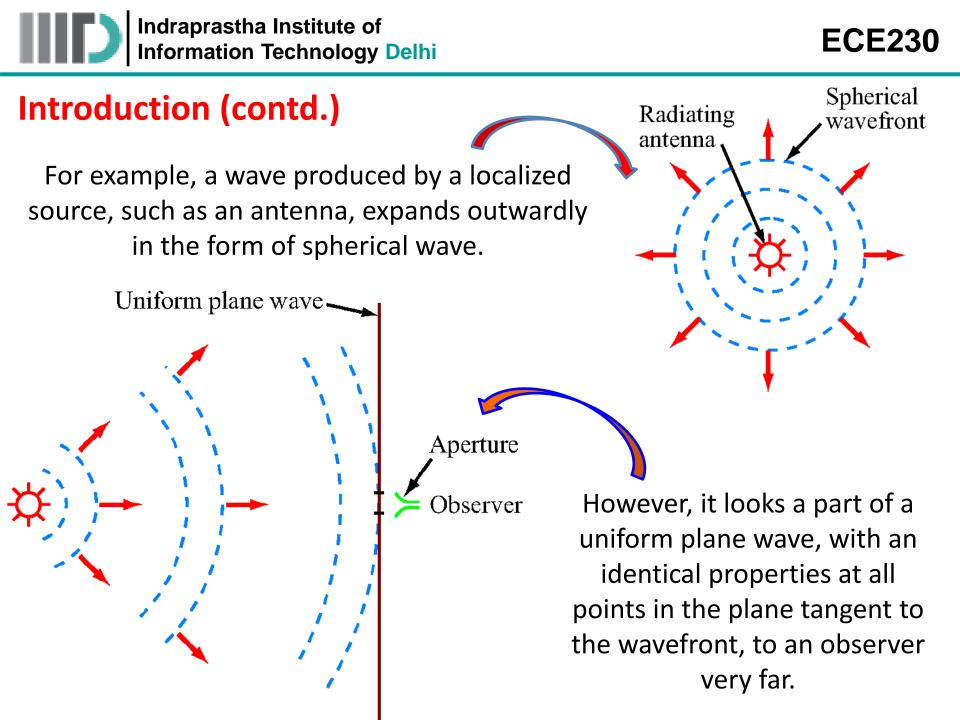
Clearly demonstrates the propagation of Electric and Magnetic field and in turn transfer of energy.

Introduction (contd.)

- The velocity with which this effect moves away from the original point is the velocity of light.
- We postulate the existence of *uniform plane wave*, in which both fields \vec{E} and \vec{H} , lie in the transverse plane \rightarrow that is, the plane whose normal is the direction of propagation.

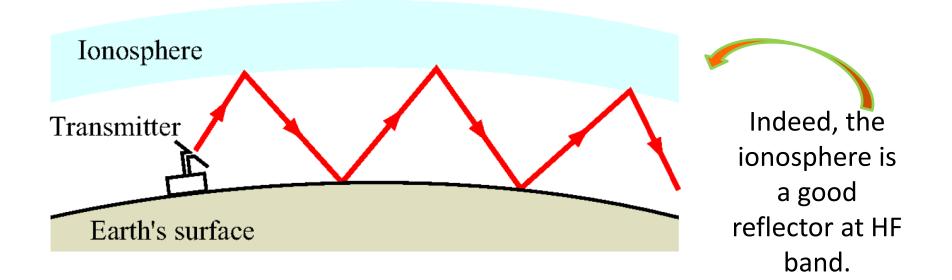
A *unif orm plane wave* is characterized by electric and magnetic fields that have uniform properties at all points across an infinite plane.

A *plane wave* has no electric or magnetic field components along its direction of propagation



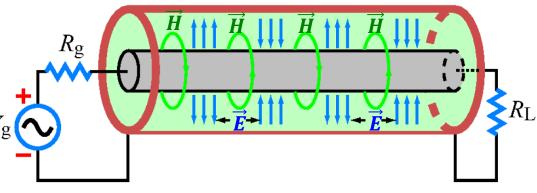
Introduction (contd.)

- When a wave propagates through a homogeneous medium without interacting with obstacles or material interfaces, it is called *unbounded* and when a wave propagates along a material structure, it is called guided.
- Earth's surface and ionosphere constitute parallel boundaries of a natural structure capable of guiding short-wave radio transmission in the HF band (3 to 30MHz).



Introduction (contd.)

 Similarly, a transmission line such as coaxial can guide a wave. For example, when an ac source excites an incident Vg wave that travels down the coaxial line toward the load.



- Unless the load is matched to the line, part (or all) of the incident wave is reflected back toward the source.
- At any point on the line, the instantaneous total voltage v(z, t) is the sum of the reflected and incident waves, both of which vary sinusoidally with time.
- Associated with the voltage difference between the inner and outer conductors is a radial electric field $\vec{E}(z,t)$ that exists in the dielectric material. $\vec{E}(z,t)$ is also sinusoidal as v(z,t) varies sinusoidally.
- Furthermore, the current flowing through the inner conductor induces an azimuthal magnetic field $\vec{H}(z,t)$.
- The coupled $\vec{E}(z,t) \& \vec{H}(z,t)$ constitute an EM field and models the wave propagation on a transmission line.
- So, propagation can be talked in terms of v(z,t) & i(z,t) or $\vec{E}(z,t) \& \vec{H}(z,t)$.

Wave Propagation in Lossy Dielectrics

- Let us develop formulations for wave propagation in lossy dielectrics it provides the general case of wave propagation.
- A lossy dielectric is a medium in which an EM wave, as it propagates, loses power owing to imperfect dielectric.
- In other words, a lossy dielectric is partially conducting medium (imperfect dielectric or imperfect conductor) with $\sigma \neq 0$, as distinct from perfect dielectric in which $\sigma = 0$.
- The Maxwell's equations in a linear, isotropic, homogeneous, lossy dielectric medium that is charge free is given by:

$$\nabla \times \vec{H}_{s} = (\sigma + j\omega\varepsilon)\vec{E}_{s} \qquad \nabla \times \vec{E}_{s} = -j\omega\mu\vec{H}_{s} \qquad \nabla \cdot \vec{E}_{s} = 0 \qquad \nabla \cdot \vec{H}_{s} = 0$$

The time factor $e^{j\omega t}$ has been suppressed in above expressions.

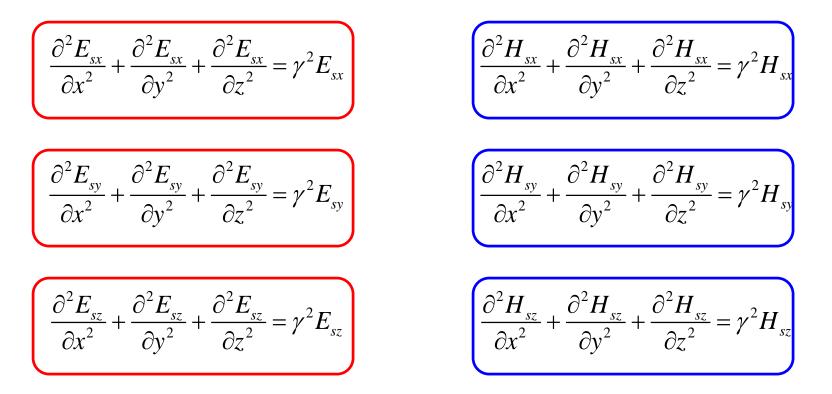
Indraprastha Institute of Information Technology Delhi

Wave Propagation in Lossy Dielectrics (contd.)

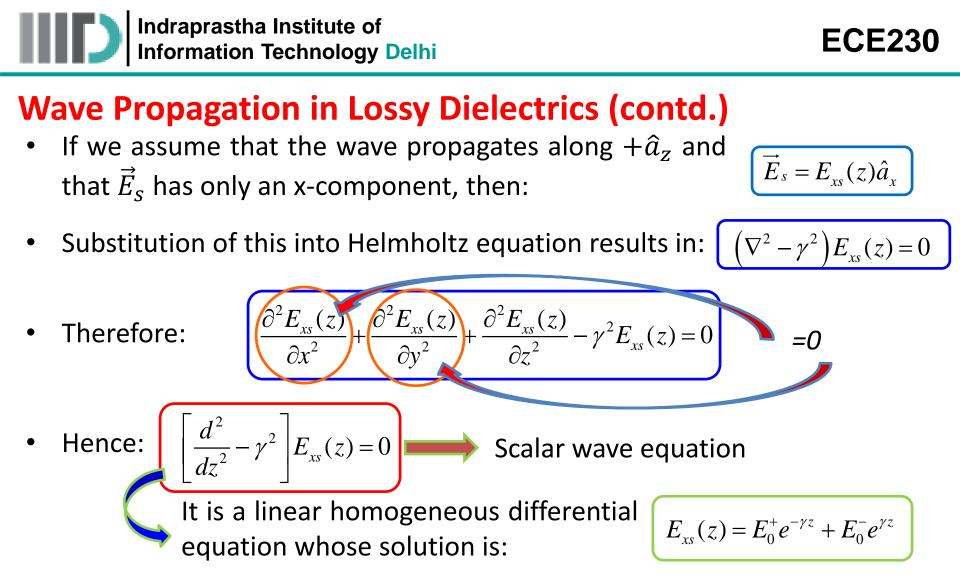
Take curl on
both sides
$$\nabla \times \vec{E}_{s} = -j\omega\mu(\nabla \times \vec{H}_{s})$$
$$\nabla(\nabla \cdot \vec{E}_{s}) - \nabla^{2}\vec{E}_{s} = -j\omega\mu(\sigma + j\omega\varepsilon)\vec{E}_{s}$$
$$\Rightarrow \nabla^{2}\vec{E}_{s} - j\omega\mu(\sigma + j\omega\varepsilon)\vec{E}_{s} = 0$$
$$\nabla^{2}\vec{E}_{s} - \gamma^{2}\vec{E}_{s} = 0$$
Where, $\gamma^{2} = j\omega\mu(\sigma + j\omega\varepsilon)$
$$\gamma$$
 is called the propagation constant

- We can similarly find expression for magnetic field: $\nabla^2 \vec{H}_s \gamma^2 \vec{H}_s = 0$
- These expressions are called vector Helmholtz's equations.
- In cartesian coordinates, for example, each of these two vector equations are equivalent to three scalar wave equations \rightarrow one for each components of \vec{E}_s or \vec{H}_s along \hat{a}_x , \hat{a}_y , and \hat{a}_z .

Wave Propagation in Lossy Dielectrics (contd.)



The component fields of any time-harmonic EM wave must individually satisfy these six partial differential equations. In many cases, the EM wave will not contain all six components. An example of this is the *plane wave*.



- Where, the first component is the wave propagating in +z direction and the second term is the wave propagating in -z direction.
- We assumed, wave only propagating in +z direction. Therefore, $E_0^- = 0$.

Indraprastha Institute of Information Technology Delhi

Wave Propagation in Lossy Dielectrics (contd.)

• Since γ is a complex quantity, we can express it as:

• Simplification gives:
$$\operatorname{Re} \gamma^2 = \alpha^2$$

• Furthermore:
$$|\gamma^2| = \beta^2 + \alpha^2 = \omega \mu \sqrt{\sigma^2 + \omega^2 \varepsilon^2}$$

• From the above two expressions we $\alpha = \alpha$ can obtain:

$$\omega_{\sqrt{\frac{\mu\varepsilon}{2}}} \left[\sqrt{1 + \left[\frac{\sigma}{\omega\varepsilon}\right]^2} - 1 \right]$$

$$\beta = \omega \sqrt{\frac{\mu\varepsilon}{2} \left[\sqrt{1 + \left[\frac{\sigma}{\omega\varepsilon}\right]^2} + 1 \right]}$$

• Therefore the simplified solution of wave equation is:

$$E_{xs}(z) = E_0^+ e^{-\gamma z} = E_0^+ e^{-(\alpha + j\beta)z}$$

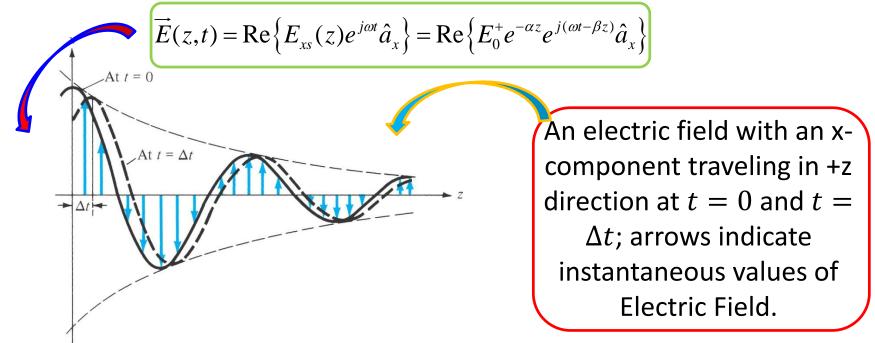
Inserting the time factor in the solution yields:

$$\vec{E}(z,t) = \operatorname{Re}\left\{E_{xs}(z)e^{j\omega t}\hat{a}_{x}\right\} = \operatorname{Re}\left\{E_{0}^{+}e^{-\alpha z}e^{j(\omega t - \beta z)}\hat{a}_{x}\right\}$$

Indraprastha Institute of Information Technology Delhi

ECE230

Wave Propagation in Lossy Dielectrics (contd.)



- It is apparent that as the wave propagates along +â_z, it decreases or attenuates in amplitude by a factor e^{-αz}, and therefore α is known as the attenuation constant or attenuation coefficient of the medium → It is a measure of the spatial rate of decay of the wave in the medium, measured in nepers per meter → For free space, σ = 0 and therefore α = 0 → the wave doesn't attenuate in free space.
- The quantity β is a measure of phase shift per unit length in radians per meter and is called the phase constant or wave number.

Indraprastha Institute of Information Technology Delhi

Wave Propagation in Lossy Dielectrics (contd.)

• The solution for magnetic field is:

$$\vec{H}(z,t) = \operatorname{Re}\left\{H_0^+ e^{-\alpha z} e^{j(\omega t - \beta z)} \hat{a}_y\right\}$$

- Where: $H_{0}^{+} = \frac{E_{0}^{+}}{\eta}$ $\eta \text{ is a complex quantity known as the intrinsic impedance of the medium.}$ $\eta = \eta = |\eta|e^{j\theta_{\eta}} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$ Derive it ! $\left[|\eta| = \frac{\sqrt{\mu/\varepsilon}}{\left[1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^{2} \right]^{1/4}} \right]$ $\tan 2\theta_{\eta} = \frac{\sigma}{\omega\varepsilon}$ $0 \le \theta_{\eta} \le 45^{\circ}$
- Therefore the magnetic field expression is:

$$\vec{H}(z,t) = \operatorname{Re}\left\{\frac{E_0}{|\eta|e^{j\theta_\eta}}e^{-\alpha z}e^{j(\omega t - \beta z)}\hat{a}_y\right\} \implies \vec{H}(z,t) = \frac{E_0}{|\eta|}e^{-\alpha z}\cos(\omega t - \beta z - \theta_\eta)\hat{a}_y$$

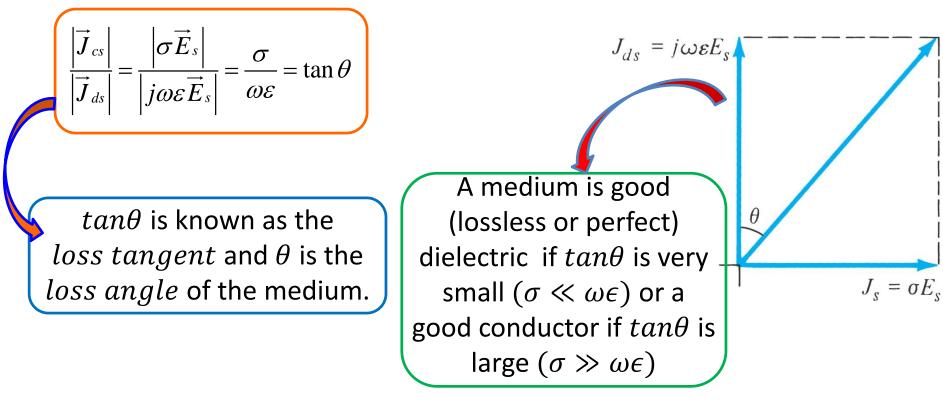
It is evident that \vec{E} and \vec{H} are out of phase by θ_n .

Wave Propagation in Lossy Dielectrics (contd.)

• In terms of β , the wave velocity u and wavelength λ are:

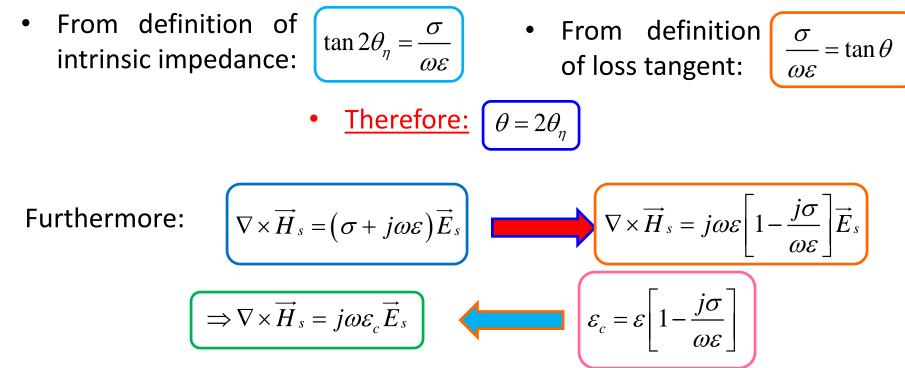
$$u = \frac{\omega}{\beta} \qquad \qquad \lambda = \frac{2\pi}{\beta}$$

• Furthermore, the ratio of the magnitude of conduction current density \vec{J}_c to that of the displacement current density \vec{J}_d is:



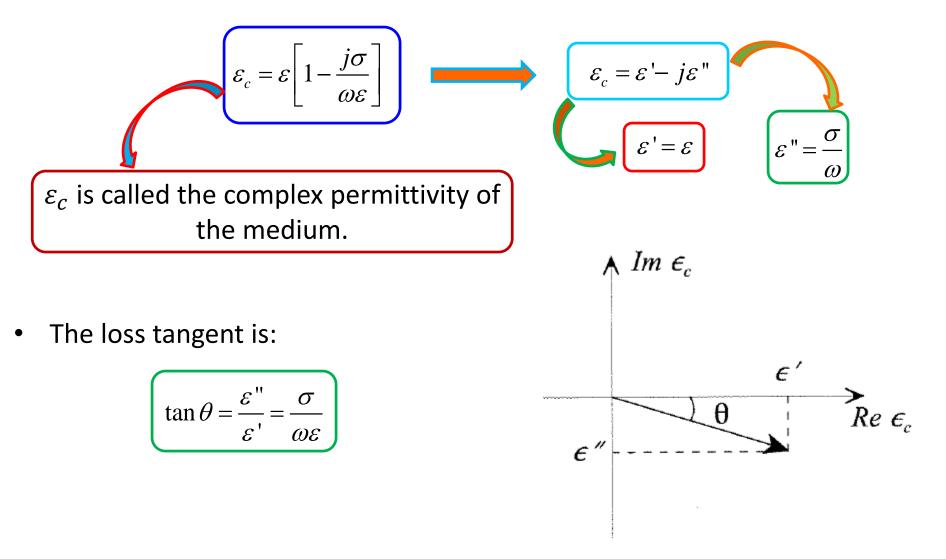
Wave Propagation in Lossy Dielectrics (contd.)

- In general, for propagation of wave, characteristics of any medium doesn't only depend on the parameters σ , ϵ , and μ but also on frequency of operation.
- A medium that is regarded as good conductor at low frequency may be a good dielectric at high frequencies.
- We have:



ECE230

Wave Propagation in Lossy Dielectrics (contd.)



Example – 8

- If the magnetic field phasor of a plane wave traveling in a medium with intrinsic impedance $\eta = 100\Omega$ is given by $\vec{H}_s = (10\hat{a}_y + 20\hat{a}_z)e^{-j4x}\frac{mA}{m}$. Find the associated electric field phasor.
- It is clear that the wave travels in x direction.
- Therefore:

 $\vec{E}_s = -\eta(\hat{a}_x \times \vec{H}_s)$ $\vec{E}_s = -100 [\hat{a}_x \times (10\hat{a}_y + 20\hat{a}_z)] e^{-j4x} \times 10^{-3}$ $\therefore \vec{E}_s = (-\hat{a}_z + 2\hat{a}_y) e^{-j4x} \frac{V}{m}$

Example – 9

• In the previous example, determine the electric field if the magnetic field is given by $\vec{H}_s = \hat{a}_y (10e^{-j3x} - 20e^{j3x}) \frac{mA}{m}$.

ECF230

• This magnetic field is composed of two components, one with amplitude of $10 \ mA/m$ belonging to a wave traveling along $+\hat{a}_x$ and another with amplitude of $20 \ mA/m$ belonging to a separate wave traveling in the opposite direction $-\hat{a}_x$. Hence, we need to treat these two components separately.

$$\vec{H}_s = \vec{H}_{1s} + \vec{H}_{2s} = \hat{a}_y 10e^{-j_3x} \frac{mA}{m} - \hat{a}_y 20e^{j_3x} \frac{mA}{m}$$

• Then use: $\vec{E}_s = -\eta(\hat{a}_x \times \vec{H}_s)$

$$\therefore \vec{E}_s = \hat{a}_z \left(e^{-j3x} + 2e^{j3x} \right) \frac{V}{m}$$