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• Electromagnetic Fields (Contd.)
• Displacement Current
• Maxwell’s Equations
• Time Varying Potentials
• Time Harmonic Fields
• Wave Propagation in Lossy Dielectrics
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Stationary Loop in Time-Varying 𝑩 (contd.)
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The time varying magnetic field induces an electric field 𝐸 whose curl is 

equal to the negative of the time derivative of 𝐵.
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Moving Conductor in a Static 𝑩 (contd.) 

• In general, if any segment of a closed circuit with contour C moves with a

velocity 𝑢 across a static magnetic field 𝐵, then the induced
𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓 is:

 .m

emf

C

V u B dl 
Only those segments of the circuit that 
cross magnetic field lines contribute to 

𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓.
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Moving Conductor in a Time-Varying 𝑩

• For a general case of a single turn conducting loop moving in time-varying
magnetic field, the induced 𝑒𝑚𝑓 is the sum of a 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑒𝑚𝑓 and
𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓.

tr m

emf emf emfV V V   . .emf
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t


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 

• induced 𝑒𝑚𝑓 also equals: .emf

S

d d
V B ds

dt dt


    

Both expressions are equivalent and choice between 
these two depends on the type of problem.
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Displacement Current
• You can recall that the Ampere’s law in

differential form is given by:
D

H J
t


  



• Integration of the above expression gives:  . . .
S S S

D
H ds J ds ds

t


  

  

• Simplification gives: . .c

C S

D
H dl I ds

t


 

  Conduction Current

• The second term has the unit of current because it is proportional to the

time derivative of the electric flux density 𝐷 called the electric
displacement.

• This term is therefore called the Displacement Current, 𝐼𝑑 .

. .dd

S S

D
I J ds ds

t


 

   𝐽𝑑 =
𝜕𝐷

𝜕𝑡
is called 

displacement current 
density
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Displacement Current (contd.)

• Therefore: . c d

C

H dl I I I   I is the total current

• In electrostatics,
𝜕𝐷

𝜕𝑡
= 0 and therefore 𝐼𝑑 = 0 and 𝐼 = 𝐼𝑐.

• The concept of displacement current was introduced by James Clerk
Maxwell when he formulated the unified theory of electricity and
magnetism under time-varying conditions.

• Let us consider the following parallel-plate capacitor to understand the
physical meaning of displacement current.

𝑬

Let us find 𝐼𝑐 and 𝐼𝑑
through each of the two 
imaginary surfaces: (1) 

cross section of the 
conducting wire, 𝑆1; (2) 

cross section of the 
capacitor, 𝑆2.
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Displacement Current (contd.)

• The simple circuit consists of a capacitor and an ac
source given by: 0( ) cossV t V t

• We know from Maxwell’s hypothesis that the total current flowing
through any surface consists, in general, of a conduction current and a
displacement current.

• With no displacement current in the wire, the total
current in the wire is:

1 1 0 sincI I CV t   

• In the perfect conducting wire, 𝐸 = 𝐷 = 0; hence, 𝐼1𝑑 = 0.

 1 0 0cos sinc
c

dV d
I C C V t CV t

dt dt
     • As for 𝐼1𝑐 , we know:

• Now in the perfect dielectric with permittivity 𝜀 between the capacitor
plates, 𝜎 = 0.

• Therefore, 𝐼2𝑐 = 0 because no conduction happens.
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Displacement Current (contd.)

𝑑 is the spacing between the plates, and  𝑎𝑦 is the direction from the 

higher potential plate to the lower potential plate at 𝑡 = 0.

0ˆ ˆ cosC
y y

V V
E a a t

d d
 

• To determine 𝐼2𝑑, we need to determine 𝐸 in the
dielectric spacing:

• Therefore displacement current in the dielectric is:

2 .d

A

D
I ds

t





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2
ˆ ˆcos .d y y

A

V
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


   
      


2 0 0sin sind

A
I V t CV t

d


       

• It is apparent that the expression for displacement current in the
dielectric is identical to the conduction current in the wire.

• The fact that these two are equal ensures the continuity of the total
current flowing through the circuit.
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Displacement Current (contd.)
• Even though the displacement current doesn’t transport free charges, it

nonetheless behaves like a real current.
• Caution, in this example we considered the wire as perfect conductor

whereas the dielectric as perfect as well.
• In practice, none of them are perfect and therefore the total current at all

the time is sum of conductions and displacement currents.

Example – 1 
• The conduction current flowing through a wire with conductivity 𝜎 = 2 ×

107 S/m and relative permittivity 𝜖𝑟 = 1 is given by 𝐼𝑐 = 2𝑠𝑖𝑛𝜔𝑡 𝑚𝐴 . If

𝜔 = 109 𝑟𝑎𝑑

𝑠
, find the displacement current.
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Example – 2

• (a) Show that the ratio of the amplitudes of the conduction current

density and displacement current density is
𝜎

𝜔𝜖
for the applied field 𝐸 =

𝐸𝑚𝑐𝑜𝑠𝜔𝑡, assume 𝜇 = 𝜇0. (b) What is this amplitude ratio if the applied

field is 𝐸 = 𝐸𝑚𝑒−𝑡/𝜏.
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Maxwell’s Equations 

• Generalized forms of Maxwell’s equations:

Differential Form Integral Form Remarks

𝛻. 𝐷 = 𝜌𝑣  
𝑆

𝐷. 𝑑𝑠 =  

𝑣

𝜌𝑣𝑑𝑣 Gauss’s Law

𝛻. 𝐵 = 0  
𝑆

𝐵. 𝑑𝑠 = 0
Nonexistence of 

isolated magnetic 
charge

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡  
𝐿

𝐸.  𝑑𝑙 = −
𝜕

𝜕𝑡
 

𝑆

𝐵. 𝑑𝑠 Faraday’s Law

𝛻 × 𝐻 =  𝐽 +
𝜕𝐷

𝜕𝑡
 𝐿 𝐻.  𝑑𝑙 =  𝑆

 𝐽 +
𝜕𝐷

𝜕𝑡
. 𝑑𝑠 Ampere’s Circuital 

Law
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Maxwell’s Equations (contd.) 
• Other equations that go hand-in-hand with

Maxwell’s equations is the Lorentz force equation:  F Q E u B  

• Continuity equation is another that is closely associated
with Maxwell’s equations: . vJ

t


  



• The concept of linearity, isotropy, and homogeneity of a material applies
to time-varying fields as well.

• In a linear, homogeneous, and isotropic medium:

0D E E P     0B H H M   
vJ E u  

• The boundary conditions remain valid for time-varying fields as well.

1 2 0t tE E   1 2 ˆ 0nE E a   1 2t tH H K   1 2 ˆ
nH H a K  

1 2n n sD D    1 2 ˆ. n sD D a   1 2 0n nB B   1 2 ˆ. 0nB B a 

• However, for a perfect conductor in a time-varying field:

𝐸 = 0, 𝐻 = 0,  𝐽 = 0 𝐵𝑛 = 0 𝐸𝑡 = 0
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Example – 3 

• Electric field intensity throughout an enclosed region of free space is

𝐸𝑦 = 𝐴 𝑠𝑖𝑛20𝑥 𝑠𝑖𝑛𝑏𝑧 {𝑠𝑖𝑛 12 × 109𝑡 }
𝑉

𝑚
. Beginning with the 𝛻 × 𝐸

relationship, use Maxwell’s equation to find a numerical value for 𝑏,
assuming 𝑏 > 0.
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Time-Varying Potentials

• For the static EM fields, the electric scalar potential was
expressed as: 4

v

v

dv
V

R




 

• Whereas, the magnetic vector
potential was expressed as: 4

v

Jdv
A

R




 

• Recall that,  𝐴 was defined from the fact that 𝛻. 𝐵 = 0, which
still holds for time-varying case. Therefore: B A

• We know from Faraday’s Law:
B

E
t


  



Let us examine, what 
happens to these potentials 

when the field vary with 
time. 

• Therefore:  E A
t


   


0

A
E

t

 
   

 

• We know, that the curl of the
gradient of a scalar field is zero:
𝛻 × −𝛻𝑉 = 0, therefore:

A
E V

t


  


A
E V

t


  


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Thus we can determine 𝐸 and 𝐵 provided 𝑉 and  𝐴 are known.

• We know that 𝛻. 𝐷 = 𝜌𝑣 is valid for time-varying conditions. We can write:

 2. .vE V A
t






     



• However, determination of 𝑉 and  𝐴 require expressions that are suitable
for time varying fields.

 2 . vV A
t






    



Time-Varying Potentials (contd.)

• Furthermore:
A

A B J V
t t

 
  

      
  

E
H J

t



  


2

2

V A
A J

t t
  

  
     

  

 
2

2

2
.

V A
A A J

t t
  

  
        

  
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• We know that a vector field is uniquely defined when its curl

and divergence are specified. The curl of  𝐴 has been

specified as 𝐵 , therefore the divergence for  𝐴 can be
expressed as:

.
V

A
t




  


This expression relates V and  𝐴 and is called 
𝐿𝑜𝑟𝑒𝑡𝑛𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠.

Time-Varying Potentials (contd.)

.
V

A
t




  


• Therefore:
2

2

2

A
A J

t
 


   



EM Wave Equations

• 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 uncouples and also creates symmetry between 𝑉 and
 𝐴 and therefore aid the analysis of wave equations.

• Actually, 𝑉 and  𝐴 satisfy 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 for time-varying potentials.
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Time-Varying Potentials (contd.)
• From those expressions, it can be deduced

that the solutions for 𝑉 and  𝐴 are:
 
4

v

v

dv
V

R




 

4
v

J dv
A

R





 
  

Where [𝜌𝑣] and [  𝐽] are the retarded values. The respective 𝑉 and 
 𝐴 are called the 𝑟𝑒𝑡𝑎𝑟𝑑𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 and the 

𝑟𝑒𝑡𝑎𝑟𝑑𝑒𝑑 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙.

• It means that the time 𝑡 in 𝜌𝑣(𝑥, 𝑦, 𝑧, 𝑡)

or  𝐽(𝑥, 𝑦, 𝑧, 𝑡) is replaced by retarded
time 𝑡′ given by:

'
R

t t
u

 

• Where, 𝑅 = |  𝑟 −  𝑟′| is the distance between the source point  𝑟′ and the
observation point  𝑟.

1
u


• Whereas:

𝑢 is the velocity of wave propagation. In free space, 
𝑢 = 𝑐 ≅ 3 × 108 𝑚/𝑠 is the speed of light in vacuum. 
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Example – 4

• Show that another form of Faraday’s law is:
A

E
t


 



where  𝐴 is the magnetic vector potential. 

B
E

t


  


B A   A

E A
t t

  
      

  

A
E

t


  



Example – 5 
• Assuming source free region, derive the diffusion equation:

2
2

2

E E
E

t t
 

 
  

 
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Time – Harmonic Fields 
• So far, our time dependence of EM fields have been arbitrary.
• Let us consider the specific scenario where the fields are time-harmonic

↔ Generally, time-varying electric and magnetic fields and their sources

(𝜌𝑣 and  𝐽) depend on spatial coordinates (𝑥, 𝑦, 𝑧) and the time variable 𝑡.
However, if their time variation is sinusoidal with angular frequency 𝜔,
then these quantities can be represented by a phasor that depends on
(𝑥, 𝑦, 𝑧) only.

• Time-harmonic field is one that varies periodically or sinusoidally with
time → Sinusoidal analysis is of practical value → This can be extended to
most waveforms by Fourier analysis.

• Sinusoids are easily expressed in phasors, which are more convenient to
work with.

• A phasor is a complex number that contains the amplitude and phase
information of a sinusoidal oscillation.

z x jy r      cos sinjz re r j    
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Time – Harmonic Fields (contd.) 
• The two forms of

representing 𝑧 are
illustrated below:

• To introduce the time element, we let:

t   

where, θ may be a function of time 
or space coordinates or constant

j j j tre re re  

Re( ) cos( )jre r t   

Im( ) sin( )jre r t   

• Thus a sinusoidal current 𝐼 𝑡 = 𝐼0cos(𝜔𝑡 + 𝜃) equals the real part of

𝐼0𝑒
𝑗𝜃𝑒𝑗𝜔𝑡 .

• The current 𝐼′ 𝑡 = 𝐼0sin(𝜔𝑡 + 𝜃) , which is the imaginary part of

𝐼0𝑒
𝑗𝜃𝑒𝑗𝜔𝑡 can also be represented as the real part of 𝐼0𝑒

𝑗𝜃𝑒𝑗𝜔𝑡𝑒−𝑗90°
.

• However, be consistent while representing the real and imaginary part of
a quantity.
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Time – Harmonic Fields (contd.) 

0 0

j

sI I e I   
• The complex term 𝐼0𝑒

𝑗𝜃 which results from dropping the
time factor 𝑒𝑗𝜔𝑡 in 𝐼 𝑡 , is called the phasor current,
denoted by 𝐼𝑠.

• Therefore 𝐼 𝑡 = 𝐼0cos(𝜔𝑡 + 𝜃) can be expressed as:  ( ) Re j t

sI t I e 

• For example, if  𝐴 = 𝐴0 cos 𝜔𝑡 − 𝛽𝑥  𝑎𝑦, then we can express  𝐴 as:

   0
ˆRe Rej x j t j t

syA A e a e A e    Where: 0
ˆj x

s yA A e a

• Notice that: s

A
j A

t






• Similarly:

sA
A t

j
 

• In general, a phasor could be a scalar or a vector.

 Re j t
sA A e 

• If a vector  𝐴(𝑥, 𝑦, 𝑧, 𝑡) is a time-harmonic field, then the

phasor form of  𝐴 is  𝐴𝑠 𝑥, 𝑦, 𝑧 ; the two quantities are
related as:
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Time – Harmonic Fields (contd.) 
• Time-Harmonic Maxwell’s equations assuming time factor 𝑒𝑗𝜔𝑡

Differential Form Integral Form

𝛻. 𝐷𝑠 = 𝜌𝑣𝑠  
𝑆

𝐷𝑠. 𝑑𝑠 =  

𝑣

𝜌𝑣𝑠𝑑𝑣

𝛻. 𝐵𝑠 = 0  
𝑆

𝐵𝑠. 𝑑𝑠 = 0

𝛻 × 𝐸𝑠 = −𝑗𝜔𝐵𝑠  
𝐿

𝐸𝑠.  𝑑𝑙 =− −𝑗𝜔 

𝑆

𝐵𝑠. 𝑑𝑠

𝛻 × 𝐻𝑠 =  𝐽𝑠 + 𝑗𝜔𝐷𝑠  𝐿 𝐻𝑠.  𝑑𝑙 =  𝑆
 𝐽𝑠 + 𝑗𝜔𝐷𝑠 . 𝑑𝑠
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Example – 6

• Given  𝐴 = 4𝑠𝑖𝑛𝜔𝑡  𝑎𝑥 + 3𝑐𝑜𝑠𝜔𝑡  𝑎𝑦 and 𝐵𝑠 = 𝑗10𝑧𝑒−𝑗𝑧  𝑎𝑥, express  𝐴 in

phasor form and 𝐵𝑠 in instantaneous form.

ˆ ˆ4cos( 90 ) 3cosx yA t a ta    
( 90 ) ˆ ˆRe 4 3j t j t

x yA e a e a     

 90 ˆ ˆRe 4 3j j t

x yA e a a e     
 

90 ˆ ˆ ˆ ˆ4 3 4 3j
s x y x yA e a a j a a      

ˆ10 jz
s xB ze a

90 ˆ10 j jz
s xB ze e a 

( 90 ) ˆRe Re 10j t j t z
s xB B e ze a            

ˆ ˆ10 cos( 90 ) 10 sin( )x xB z t z a z t z a        
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Example – 7

• The electric field phasor of an EM wave in free space is:

4 ˆ( ) 10 j y
s xE y e a V/m

Find (a) 𝜔 such that 𝐸𝑠 satisfies Maxwell’s equations.,

(b) the corresponding magnetic field 𝐻𝑠.



Indraprastha Institute of 

Information Technology Delhi ECE230

Introduction – EM Wave Propagation 
• Let us consider the Maxwell’s equations in free space (i.e., 𝜌𝑣 =  𝐽 = 0).

0

E
H

t



 


0

H
E

t



  


. 0E  . 0H 

• First equation states that: If 𝐸 is changing with time at some point, then

𝐻 has curl at that point; therefore 𝐻 varies spatially in a direction normal
to its orientation direction.

• Also, if 𝐸 is changing with time, then 𝐻 will in general also change with
time, although not necessarily in the same way.

• Next we see from second equation: a time varying 𝐻 generates 𝐸, which
having curl, varies spatially in the direction normal to its orientation.

• We now once more have a changing 𝐸, our original hypothesis, but this
field is present at a small distance away from the point of original
disturbance.

Clearly demonstrates the propagation of Electric and 
Magnetic field and in turn transfer of energy. 
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Introduction (contd.)

• The velocity with which this effect moves away from the original point is
the velocity of light.

• We postulate the existence of 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒, in which both fields

𝐸 and 𝐻, lie in the transverse plane → that is, the plane whose normal is
the direction of propagation.

A 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 is characterized by electric and 
magnetic fields that have uniform properties at all points 

across an infinite plane.

A 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 has no electric or magnetic field 
components along its direction of propagation
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Introduction (contd.)

For example, a wave produced by a localized 
source, such as an antenna, expands outwardly 

in the form of spherical wave. 

However, it looks a part of a 
uniform plane wave, with an 

identical properties at all 
points in the plane tangent to 
the wavefront, to an observer 

very far. 
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Introduction (contd.)

• When a wave propagates through a homogeneous medium without
interacting with obstacles or material interfaces, it is called unbounded
and when a wave propagates along a material structure, it is called
guided.

• Earth’s surface and ionosphere constitute parallel boundaries of a natural
structure capable of guiding short-wave radio transmission in the HF band
(3 to 30MHz).

Indeed, the 
ionosphere is 

a good 
reflector at HF 

band. 
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Introduction (contd.)
• Similarly, a transmission line

such as coaxial can guide a
wave. For example, when an ac
source excites an incident
wave that travels down the
coaxial line toward the load.

𝑬 𝑬

𝑯𝑯𝑯𝑯

• Unless the load is matched to the line, part (or all) of the incident wave is
reflected back toward the source.

• At any point on the line, the instantaneous total voltage 𝑣(𝑧, 𝑡) is the sum of the
reflected and incident waves, both of which vary sinusoidally with time.

• Associated with the voltage difference between the inner and outer conductors

is a radial electric field 𝐸(𝑧, 𝑡) that exists in the dielectric material. 𝐸(𝑧, 𝑡) is also
sinusoidal as 𝑣(𝑧, 𝑡) varies sinusoidally.

• Furthermore, the current flowing through the inner conductor induces an

azimuthal magnetic field 𝐻 𝑧, 𝑡 .

• The coupled 𝐸(𝑧, 𝑡) & 𝐻 𝑧, 𝑡 constitute an EM field and models the wave
propagation on a transmission line.

• So, propagation can be talked in terms of 𝑣(𝑧, 𝑡) & i(𝑧, 𝑡) or 𝐸(𝑧, 𝑡) & 𝐻 𝑧, 𝑡 .
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Wave Propagation in Lossy Dielectrics 

• Let us develop formulations for wave propagation in lossy dielectrics – it
provides the general case of wave propagation.

• A lossy dielectric is a medium in which an EM wave, as it propagates,
loses power owing to imperfect dielectric.

• In other words, a lossy dielectric is partially conducting medium
(imperfect dielectric or imperfect conductor) with 𝜎 ≠ 0, as distinct from
perfect dielectric in which 𝜎 = 0.

The time factor 𝑒𝑗𝜔𝑡 has been suppressed in above expressions. 

 s sH j E    s sE j H   . 0sE  . 0sH 

• The Maxwell’s equations in a linear, isotropic, homogeneous, lossy
dielectric medium that is charge free is given by:
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Wave Propagation in Lossy Dielectrics (contd.) 

s sE j H  

Take curl on 
both sides 

 s sE j H   

   2. s s sE E j j E       

=0

2 2 0s sE E    2 j j    Where,

𝛾 is called the propagation constant

• We can similarly find expression for magnetic field: 2 2 0s sH H  

• These expressions are called vector Helmholtz’s equations.
• In cartesian coordinates, for example, each of these two vector

equations are equivalent to three scalar wave equations → one for each

components of 𝐸𝑠 or 𝐻𝑠 along  𝑎𝑥 ,  𝑎𝑦, and  𝑎𝑧.

 2 0s sE j j E     
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Wave Propagation in Lossy Dielectrics (contd.) 

2 2 2
2

2 2 2

sx sx sx
sx

E E E
E

x y z


  
  

  

2 2 2

2

2 2 2

sy sy sy

sy

E E E
E

x y z


  
  

  

2 2 2
2

2 2 2

sz sz sz
sz

E E E
E

x y z


  
  

  

2 2 2
2

2 2 2

sx sx sx
sx

H H H
H

x y z


  
  

  

2 2 2

2

2 2 2

sy sy sy

sy

H H H
H

x y z


  
  

  

2 2 2
2

2 2 2

sz sz sz
sz

H H H
H

x y z


  
  

  

The component fields of any time-harmonic EM wave must 
individually satisfy these six partial differential equations. In many 

cases, the EM wave will not contain all six components. An example of 
this is the 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒.
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Wave Propagation in Lossy Dielectrics (contd.) 
• If we assume that the wave propagates along + 𝑎𝑧 and

that 𝐸𝑠 has only an x-component, then:
ˆ( )s xs xE E z a

• Substitution of this into Helmholtz equation results in:  2 2 ( ) 0xsE z  

• Therefore:
2 2 2

2

2 2 2

( ) ( ) ( )
( ) 0xs xs xs

xs

E z E z E z
E z

x y z


  
   

  
=0

• Hence:
2

2

2
( ) 0xs

d
E z

dz


 
  

 
Scalar wave equation 

It is a linear homogeneous differential
equation whose solution is: 0 0( ) z z

xsE z E e E e    

• Where, the first component is the wave propagating in +𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 and
the second term is the wave propagating in −z 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.

• We assumed, wave only propagating in +𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. Therefore, 𝐸0
− = 0.
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Wave Propagation in Lossy Dielectrics (contd.) 

• Simplification gives: 2 2 2 2Re        2 2 2    

• Furthermore: 2 2 2 2 2 2         

• From the above
two expressions we
can obtain:

2

1 1
2

 
 



 
 

    
  
 

2

1 1
2

 
 



 
 

    
  
 

j     2 2 2 2 j j j          

• Since 𝛾 is a complex
quantity, we can
express it as:

   ( )

0
ˆ ˆ( , ) Re ( ) Rej t z j t z

xs x xE z t E z e a E e e a      
• Inserting the time factor in the

solution yields:

• Therefore the simplified solution of wave
equation is:

( )

0 0( ) z j z

xsE z E e E e       
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Wave Propagation in Lossy Dielectrics (contd.) 

An electric field with an x-
component traveling in +z 
direction at 𝑡 = 0 and 𝑡 =

∆𝑡; arrows indicate 
instantaneous values of 

Electric Field.

• It is apparent that as the wave propagates along + 𝑎𝑧, it decreases or attenuates
in amplitude by a factor 𝑒−𝛼𝑧, and therefore 𝛼 is known as the attenuation
constant or attenuation coefficient of the medium → It is a measure of the
spatial rate of decay of the wave in the medium, measured in nepers per meter
→ For free space, 𝜎 = 0 and therefore 𝛼 = 0 → the wave doesn’t attenuate in
free space.

• The quantity 𝛽 is a measure of phase shift per unit length in radians per meter
and is called the phase constant or wave number.

   ( )

0
ˆ ˆ( , ) Re ( ) Rej t z j t z

xs x xE z t E z e a E e e a      
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Wave Propagation in Lossy Dielectrics (contd.) 

• The solution for magnetic field is:  ( )

0
ˆ( , ) Re z j t z

yH z t H e e a    

• Where:
0

0

E
H




  η is a complex quantity known as the 

𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 of the medium.

j j
e

j

 
  

 
  


Derive it !

1/4
2

/

1

 







  
  
   

tan 2 





 0 ≤ 𝜃η ≤ 45°

• Therefore the magnetic field expression is:

( )0 ˆ( , ) Re z j t z

yj

E
H z t e e a

e 

  




 
  

  
  

0 ˆ( , ) cos( )z

y

E
H z t e t z a

  


  

It is evident that 𝑬 and 𝑯 are out of phase by 𝜽𝜼.
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Wave Propagation in Lossy Dielectrics (contd.) 

• In terms of 𝛽 , the wave velocity 𝑢 and
wavelength λ are:

u





2





• Furthermore, the ratio of the magnitude of conduction current density  𝐽𝑐
to that of the displacement current density  𝐽𝑑 is:

tan
scs

sds

J E

J j E

 



  

𝑡𝑎𝑛𝜃 is known as the 
𝑙𝑜𝑠𝑠 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 and 𝜃 is the 
𝑙𝑜𝑠𝑠 𝑎𝑛𝑔𝑙𝑒 of the medium.  

A medium is good 
(lossless or perfect) 

dielectric  if 𝑡𝑎𝑛𝜃 is very 
small (𝜎 ≪ 𝜔𝜖) or a 

good conductor if 𝑡𝑎𝑛𝜃 is 
large (𝜎 ≫ 𝜔𝜖)
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Wave Propagation in Lossy Dielectrics (contd.) 
• In general, for propagation of wave, characteristics of any medium

doesn’t only depend on the parameters 𝜎, 𝜖, 𝑎𝑛𝑑 𝜇 but also on frequency
of operation.

• A medium that is regarded as good conductor at low frequency may be a
good dielectric at high frequencies.

• We have:

tan 2 







• From definition of
intrinsic impedance: tan







• From definition
of loss tangent:

• Therefore: 2  

 s sH j E   • Furthermore: 1s s

j
H j E






 
   

 

s scH j E  1c

j
 



 
  

 
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Wave Propagation in Lossy Dielectrics (contd.) 

1c

j
 



 
  

 
' ''c j   

'  ''







• The loss tangent is: 

"
tan

'

 


 
 

𝜀𝑐 is called the complex permittivity of 
the medium. 
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Example – 8

• If the magnetic field phasor of a plane wave traveling in a medium with

intrinsic impedance η = 100Ω is given by 𝐻𝑠 = 10 𝑎𝑦 + 20 𝑎𝑧 𝑒−𝑗4𝑥 𝑚𝐴

𝑚
.

Find the associated electric field phasor.

• It is clear that the wave travels in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.

• Therefore: 

𝐸𝑠 = −η( 𝑎𝑥 × 𝐻𝑠)

𝐸𝑠 = −100  𝑎𝑥 × (10 𝑎𝑦 + 20 𝑎𝑧) 𝑒−𝑗4𝑥 × 10−3

∴ 𝐸𝑠= − 𝑎𝑧 + 2 𝑎𝑦 𝑒−𝑗4𝑥
𝑉

𝑚
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Example – 9

• In the previous example, determine the electric field if the magnetic field

is given by 𝐻𝑠 =  𝑎𝑦 10𝑒−𝑗3𝑥 − 20𝑒𝑗3𝑥 𝑚𝐴

𝑚
.

• This magnetic field is composed of two components, one with amplitude
of 10 𝑚𝐴/𝑚 belonging to a wave traveling along + 𝑎𝑥 and another with
amplitude of 20 𝑚𝐴/𝑚 belonging to a separate wave traveling in the
opposite direction − 𝑎𝑥. Hence, we need to treat these two components
separately.

𝐻𝑠 = 𝐻1𝑠 + 𝐻2𝑠 =  𝑎𝑦10𝑒
−𝑗3𝑥

𝑚𝐴

𝑚
− 𝑎𝑦 20𝑒𝑗3𝑥

𝑚𝐴

𝑚

𝐸𝑠 = −η( 𝑎𝑥 × 𝐻𝑠)• Then use: 

∴ 𝐸𝑠 =  𝑎𝑧 𝑒−𝑗3𝑥 + 2𝑒𝑗3𝑥
𝑉

𝑚


