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Example – 1

• Consider an infinite cylinder made of magnetic material. This cylinder is
centered along the z-axis, has a radius of 𝟐𝒎, and a permeability of 4𝜇0.

Inside the cylinder there exists a magnetic flux density:

𝐵 =
8𝜇0

𝜌
 𝑎ϕ (𝜌 ≤ 1)

Determine the magnetization current 𝐾𝑏 flowing on the surface of this

cylinder, as well as the magnetization current  𝐽𝑏 flowing within the
volume of this cylinder.
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Magnetic Boundary Conditions

𝜇1

𝜇2

• Consider the interface between two different materials with dissimilar
permeabilities:

𝐻1 𝐵1

𝐻2 𝐵2

Say that a magnetic
field and a magnetic
flux density is
present in both
regions.

Q: How are the fields in region 1 (i.e., 𝐻1 and 𝐵1) related to the

fields in region 2 (i.e., 𝐻2 and 𝐵2 )

A: They must satisfy the magnetic boundary conditions !
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Magnetic Boundary Conditions (contd.)

𝜇1

𝜇2

 𝑎𝑛

• First, let’s write the fields at the interface in terms of their normal 𝐻𝑛 and

tangential 𝐻𝑡 vector components:

𝐻1𝑛

𝐻1𝑡

𝐻1 = 𝐻1𝑛 + 𝐻1𝑡

𝐻2𝑛 𝐻2𝑡

𝐻2 = 𝐻2𝑛 + 𝐻2𝑡

• Our first boundary condition states that the tangential
component of the magnetic field is continuous across a
boundary. In other words:

1 2t tH H

The tangential component of the magnetic field on one side of the
material boundary is equal to the tangential component on the
other side !
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1 2

1 2

t tB B

 
• Furthermore: Tangential component of magnetic flux 

density is discontinuous

• Interface having bound surface charge density 𝑲𝒃 will follow: 1 2t t bH H K 

Magnetic Boundary Conditions (contd.)

𝜇1

𝜇2

 𝑎𝑛

• We can likewise consider the magnetic flux densities on the material
interface in terms of their normal and tangential components:

𝐵1𝑛

𝐵1𝑡

𝐵1 = 𝐵1𝑛 + 𝐵1𝑡

𝐵2𝑛 𝐵2𝑡

𝐵2 = 𝐵2𝑛 + 𝐵2𝑡

• The second magnetic boundary condition states that the
normal vector component of the magnetic flux density is
continuous across the material boundary. In other words:

1 2n nB B

• Furthermore:

1 21 2n nH H 
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• If the fields make angle θ with the normal to the interface then:

𝐵1

𝐵2

𝜇1

𝜇2

𝐻1

𝐻2

𝜇1

𝜇2

1 21 1 2 2cos cosn nB B B B   
1 2

1 21 2

1 2

sin sint t

B B
H H 

 
  

• Simplification gives: 2 1

1 2

tan

tan

 

 


Law of refraction for magnetic flux 
lines at a boundary with no 

surface current

Magnetic Boundary Conditions (contd.)
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Example – 2 

• Given that 𝐻1 = −2 𝑎𝑥 + 6 𝑎𝑦 + 4 𝑎𝑧 𝐴/𝑚 in region 𝑦 − 𝑥 − 2 ≤ 0, where

𝜇1 = 5𝜇0, calculate:

(a) 𝑀1 and 𝐵1

(b) 𝐻2 and 𝐵2 in region 𝑦 − 𝑥 − 2 ≥ 0, where 𝜇2 = 2𝜇0
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Example – 3 
Region -1, described by 3𝑥 + 4𝑦 ≥ 10, is free space, whereas region-2,
described by 3𝑥 + 4𝑦 ≤ 10 , is a magnetic material for which 𝜇 = 10𝜇0.
Assuming that the boundary between the material and free space is current

free, find 𝐵2 if 𝐵1 = 0.1 𝑎𝑥 + 0.4 𝑎𝑦 + 0.2 𝑎𝑧 𝑊𝑏/𝑚2.
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Example – 4 

The interface 4𝑥 − 5𝑧 = 0 between two magnetic media carries current

35 𝑎𝑦 𝐴/𝑚. If 𝐻1 = 25 𝑎𝑥 − 30 𝑎𝑦 + 45 𝑎𝑧 𝐴/𝑚 in region 4𝑥 − 5𝑧 ≤ 0 where

𝜇𝑟1 = 5, calculate 𝐻1 in the region 4𝑥 − 5𝑧 ≥ 0 where 𝜇𝑟2 = 10.
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Inductors 

• Generally - coil of conducting wire

• Usually wrapped around a solid core.
If no core is used, then the inductor is
said to have an ‘air core’.

• An inductor is the magnetic analogue of an electric capacitor.

• Just as a capacitor can store energy in the electric field in the medium
between its conducting surfaces, an inductor can store energy in the
magnetic field near its current carrying conductors.
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𝑩

Inductors (contd.) 

• A typical inductor consists of
multiple turns of wire
helically coiled around a
cylindrical core called a
solenoid.

• Core may be air-filled or may
contain a magnetic material
with permeability 𝜇.

• If the turns are closely spaced,
the solenoid will create better
inductor.

𝑩

The magnetic field 
lines resembles those 

of the permanent 
magnet

• Symbols
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Inductors (contd.) 

𝑩

• In such architecture, the current is
proportional to the flux linkage:

λ = 𝐿𝐼

where, 𝐿 is a constant of proportionality 
called the inductance of the circuit.  

• A circuit (or closed conducting path) carrying current 𝐼

produces a magnetic field 𝐵 that causes a flux ψ =

 𝐵. 𝑑𝑠 to pass through each turn of the circuit. Circuit

with 𝑁 identical turns has flux linkage of:

N 

• Inductance, 𝐿, is then defined as the ratio of the magnetic
flux linkage λ to the current 𝐼 through the inductor as:

N
L

I I

 
 

The unit is Henry (i.e, Wb/A).
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Inductors (contd.) 
• Like capacitance, inductance may also be regarded as a

measure of how much magnetic energy is stored in an
inductor.

• The magnetic energy stored in an inductor is:

21

2
mW LI

2

2 mW
L

I


• In case of two circuits carry current
𝐼1and 𝐼2 as shown then a magnetic
interaction exists between the circuits.

• Four component fluxes ψ11, ψ12, ψ21, and ψ22 are produced.
ψ12, for example, is the flux passing through circuit-1 due to
current 𝐼2 in circuit-2.

• If 𝐵2 is the field due to 𝐼2 and 𝑆1 is the area of circuit-1 then:
1

212 .
S

B ds  
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Inductors (contd.) 

• The mutual inductance 𝑀12 is defined as the ratio of
the flux linkage λ12 = 𝑁1ψ12 of circuit-1 to current 𝐼2:

12 1 12
12

2 2

N
M

I I

 
 

• Similarly, 𝑀21 is defined as the ratio of the flux
linkage λ21 = 𝑁2ψ21 of circuit-2 to current 𝐼1:

21 2 21
21

1 1

N
M

I I

 
 

• Now, the self-inductance of
circuit-1 and circuit-2 is given by:

11 1 1
1

1 1

N
L

I I

 
  22 2 2

2

2 2

N
L

I I

 
 

• The total energy in the magnetic
field is the sum of the energies
due to 𝐿1, 𝐿2 and 𝑀12 (or 𝑀21):

2 2

1 2 12 1 1 2 2 12 1 2

1 1

2 2
mW W W W L I L I M I I     

The +ve sign is taken if currents 𝐼1 and 𝐼2 flow such that the magnetic 
fields of the two circuits strengthen each other, otherwise the –ve sign is 

taken.
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Inductors (contd.) 
• We find the self-inductance 𝐿 by taking the following steps.

1. Choose a suitable coordinate system.
2. Let the inductor carry current 𝐼.

3. Determine 𝐵 from Biot-Savart Law (or from Ampere’s circuital law if

symmetry exists) and calculate ψ from ψ =  𝐵. 𝑑𝑠 .

4. Finally find 𝐿 from 𝐿 =
λ

𝐼
=

𝑁ψ

𝐼
.

The mutual inductance between two circuits may be calculated by taking a 
similar procedure. 

• In coaxial or a parallel-wire transmission line, the inductance produced by
the flux internal to the conductor is called the internal inductance 𝐿𝑖𝑛

while that produced by the flux external to it is called external inductance
𝐿𝑒𝑥𝑡 .

• The total inductance is given by:
in extL L L 
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Example – 5 
• Calculate the self-inductance per unit length of an infinitely long solenoid.



Indraprastha Institute of 

Information Technology Delhi ECE230

Magnetic Energy

• The potential energy in electrostatic field was
derived as:

21 1
.

2 2
EW D Edv E dv  

One can derive similar expression for 
magnetostatic field

• Expressions are:
2

21 1
.

2 2 2
m

B
w H B H


  

• The total energy in a linear medium is:

m mW w dv 
1

.
2

mW B Hdv 
21

2
mW H dv 

Example – 6 
• Determine the self-inductance of a coaxial cable of inner radius 𝑎 and

outer radius 𝑏.
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Example – 7 

• Determine the inductance per unit length of a two-wire transmission line
with separation distance 𝑑 shown below.
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Electromagnetic Fields 

• Stationary Charges → Electrostatic Fields 

• Steady Currents → Magnetostatic Fields 

• Time Varying Currents → Electromagnetic Fields (or Waves) 

• Any pulsating current will produce radiation (time-varying fields)

cause of radiated emission 
in digital logic boards

Say instead of a static magnetic flux density, we consider a 

time-varying 𝐵 field (i.e., 𝐵(𝑥, 𝑦, 𝑧, 𝑡)).  
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Faraday’s Law
• Recall that one of Maxwell’s equations is:

( , , , )
( , , )

B x y z t
E x y z

t


  



Yikes! The curl of the electric field is therefore not zero if 
the magnetic flux density is time-varying!

If the magnetic flux density is changing with time, the electric field 
will not be conservative!

Q: What the heck does this equation mean ?!? ( , , , )
( , , )

B x y z t
E x y z

t


  



( , , ). ( , , , ).
S S

E x y z ds B x y z t ds
t


  

 

A: Integrate both sides over some surface S:

( , , ). ( , , , ).
L S

E x y z dl B x y z t ds
t


 

 

Stoke’s Theorem
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Faraday’s Law (contd.)
( , , ). ( , , , ).

L S

E x y z dl B x y z t ds
t


 

 

Note that  𝐸 𝑥, 𝑦, 𝑧 .  𝑑𝑙 ≠ 0
This equation is called Faraday’s 

Law of Induction.Q: Again, what does this mean?

A: It means that a time varying magnetic flux density 𝐵(𝑥, 𝑦, 𝑧, 𝑡) can
induce an electric field (and thus an electric potential difference)!

Faraday’s Law describes the behavior of devices such as 
generators, inductors, and transformers !

• Farday discovered that an induced potential difference (or electromotive
force, emf) in any closed circuit is equal to the time rate of change of the
magnetic flux linkage by the circuit.

.emf

S

d d d
V N N B ds

dt dt dt

 
      
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Faraday’s Law (contd.)
• It is apparent that an 𝒆𝒎𝒇 can be generated in a closed loop under any of the three

conditions
• A time varying magnetic field linking a stationary loop; the induced 𝒆𝒎𝒇 is then

called the 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓 𝒆𝒎𝒇.
• A moving loop with a time-varying surface area in a static field; the induced

𝒆𝒎𝒇 is then called 𝒎𝒐𝒕𝒊𝒐𝒏𝒂𝒍 𝒆𝒎𝒇.

• A moving loop in a time-varying field 𝑩.

• The total 𝒆𝒎𝒇 is then given by: tr m

emf emf emfV V V 

• For stationary loop:  0m

emfV  • For static 𝑩:  0tr

emfV 

.emf

S

d d d
V N N B ds

dt dt dt

 
      

The negative sign in this expression shows that the induced voltage acts in such a way as to 
oppose the flux producing it. This is known as Lenz’s Law. 

It emphasizes that the direction of current flow in the circuit is such that the induced 𝐵

produced by the induced current will oppose the change in the original 𝐵. 
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𝐵(𝑡)

• Let us consider a stationary, single-
turn, conducting, circular loop with
contour C and surface area S placed in

a time-varying magnetic field 𝐵 𝑡 .

.tr

emf

S

B
V ds

t


 



• As stated, 𝑒𝑚𝑓 will be induced in this
loop and its given by:

𝐵(𝑡)

• The 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑒𝑚𝑓 is the voltage
difference that would appear across
the small opening between terminals 1
and 2, even in the absence of the
resistor 𝑅.

12

tr

emfV V
𝑉12 is the open-circuit voltage across 

the open ends of the loop

Stationary Loop in Time-Varying 𝑩
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Stationary Loop in Time-Varying 𝑩 (contd.)

• The direction of 𝑑𝑠, the loops
differential surface normal, can be
chosen either upward or downward.

• These two choices are associated
with the opposite designations of
the polarities of terminals 1 and 2.

• The choice of direction of 𝑑𝑠 and
the polarity of 𝑒𝑚𝑓 is governed by
right hand rule: If 𝑑𝑠 points along
the thumb of the right hand, then
the directions of the contour C
indicated by the four fingers is such
that it always passes across the
opening from the positive terminal
to the negative terminal.

𝐵(𝑡)

12 .tr

emf

S

B
V V ds

t


  


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Stationary Loop in Time-Varying 𝑩 (contd.)

• If the loop has an internal resistance 𝑅𝑖 , the
circuit can be represented equivalently as:

• The polarity of 𝑒𝑚𝑓 and hence the direction of 𝐼 is governed by Lenz’s
law, which states that the current in the loop is always in a direction that
opposes the change of magnetic flux ψ(𝑡) that produced 𝐼.

tr

emf

i

V
I

R R




• Therefore the current 𝐼 flowing
through the circuit is:

𝐵(𝑡)

𝐵𝑖𝑛𝑑

• The current 𝐼 induces a magnetic field of its

own, 𝐵𝑖𝑛𝑑, with a corresponding flux ψ𝑖𝑛𝑑 .

• The direction of 𝐵𝑖𝑛𝑑 is governed by right hand

rule: If 𝐼 is in a clockwise direction, then 𝐵𝑖𝑛𝑑

points downward through S.
• Conversely, if 𝐼 is in counter clockwise

direction, then 𝐵𝑖𝑛𝑑 points upwards through S.
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Stationary Loop in Time-Varying 𝑩 (contd.)

• If the original 𝑩(𝐭) is increasing, means
𝑑ψ

𝑑𝑡
> 0, then according to Lenz’s

law, 𝐼 has to be in the direction shown in order for 𝐵𝑖𝑛𝑑 to be in

opposition to 𝐵(t).
• As a consequence, terminal 2 would be at higher potential and 𝑒𝑚𝑓

would have a negative value.

• However, if 𝐵(t) were to remain in the same direction but decrease in

magnitude, means
𝑑ψ

𝑑𝑡
< 0, then the current would have to reverse

direction, and its induced field 𝐵𝑖𝑛𝑑 would be in the same direction as

𝐵(t) so as to oppose the change (decrease) in 𝐵(t).

It is important to remember that  𝐵𝑖𝑛𝑑 serves to oppose 

the change in 𝐵(t), and not necessarily 𝐵(t) itself. 
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Stationary Loop in Time-Varying 𝑩 (contd.)

.tr

emf

S

B
V ds

t


 


Summary:

.tr

emf

C

V E dl 

𝐵(𝑡)

𝐵𝑖𝑛𝑑

Its assumed that the 
contour C is closed path 

↔ Approximation 

. .
C S

B
E dl ds

t


 

  ( ). .
S S

B
E ds ds

t


  

 
( )B t

E
t


  



The time varying magnetic field induces an electric field 𝐸 whose curl is 

equal to the negative of the time derivative of 𝐵.
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Example – 8

Determine voltages 𝑉1 and 𝑉2 across 2Ω
and 4Ω resistors shown in the figure. The
loop is located in 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, its area is

4𝑚2, the magnetic flux density is 𝐵 =
−  𝑎𝑧0.3𝑡 (T), and the internal resistance
of the wire may be ignored.
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Moving Conductor in a Static 𝑩

• Let us consider a wire of
length 𝑙 moving across a static

magnetic field 𝐵 =  𝑎𝑧𝐵0 with
constant velocity 𝑢. The
conducting wire contains free
electrons.

𝑢

𝑢

𝐸𝑚

𝐵

• This magnetic force is equivalent to the electrical force
that would be exerted on the particle by the electric

field 𝐸𝑚 given by:

m
m

F
E u B

q
  

 mF q u B 

• The magnetic force  𝐹𝑚 acting on a particle with charge

𝑞 moving with velocity 𝑢 in a magnetic field 𝐵 is:
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𝑢

𝑢

𝐸𝑚

𝐵

Moving Conductor in a Static 𝑩 (contd.) 
• The field 𝐸𝑚 generated by the

motion of the charged particle is
called motional electric field and

is orthogonal to both 𝑢 and 𝐵.

• For our example, 𝐸𝑚 is along
− 𝑎𝑦.

• The magnetic force acting on the
negatively charged electrons
causes them to drift in the

direction of −𝐸𝑚; i.e., toward the
wire end label 1.

• The movement of electrons induces a voltage between ends 1 and 2.
• The induced voltage is called 𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓.

• 𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓 is defined as:  
1 1

12

2 2

. .m
memfV V E dl u B dl    
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Moving Conductor in a Static 𝑩 (contd.) 

• For the conducting wire:

0 0
ˆ ˆ ˆ

x z yu B ua a B a uB     ˆ
ydl a dl

• Therefore: 12 0

m

emfV V uB l  

• In general, if any segment of a closed circuit with contour C moves with a

velocity 𝑢 across a static magnetic field 𝐵, then the induced
𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓 is:

 .m

emf

C

V u B dl 
Only those segments of the circuit that 
cross magnetic field lines contribute to 

𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑚𝑓.
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Example – 9

• The wire shown in the figure carries a
current 𝐼 = 10𝐴. A 30-cm long metal
rod moves with a constant velocity
𝑢 = 5 𝑎𝑧 m/s. Find 𝑉12.

𝜌

𝐵𝐵

𝑢


