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• Ampere’s Circuital Law
• Applications of Ampere’s Law
• Magnetic Flux Density  
• Magnetic Vector Potential 
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Example – 1 

• A free-standing linear conductor of
length l carries a current I along z-axis
as shown in Figure. Determine the
magnetic field intensity at point P
located at a distance r in the x-y
plane.

𝑑𝐻  𝑟 into
the page

 𝑎𝑧
 𝑎𝑅

• It is apparent that:

 𝑑𝑙 = 𝑑𝑧  𝑎𝑧
 𝑑𝑙 ×  𝑎𝑅 = 𝑑𝑧𝑠𝑖𝑛α 𝑎ϕ

• From Biot-Savart Law: 
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where α is the 
angle between  𝑑𝑙

and  𝑎𝑅

• Here, both α and R are dependent on the integration variable z, but the
radial distance r is not.
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Example – 1  (contd.) 

𝑅 1
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• Therefore:
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Where α1 and α2 are the limiting angles at  𝑧 =

−
𝑙

2
and 𝑧 =

𝑙

2
respectively.  
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• Lets use the following transformation:

• This expression is usually valid for any straight filamentary conductor of
finite length.

• The conductor need not lie on the z-axis but it must be straight.

• 𝐻 is always along the unit vector  𝑎ϕ (i.e, along concentric circular paths)

irrespective of the length of the wire or the point of interest P.
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Example – 1  (contd.) 

α1 = 90ο and α2 = 180ο

• Another special case: when the conductor is infinite (with respect to P) so
that its bottom end is at (i.e., 0, 0, -∞) while the top end is at (0, 0, ∞)
then,
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• As a special case: when the conductor is semi-finite (with respect to P) so
that its bottom end is at the origin (i.e., 0, 0, 0) while the top end is at (0,
0, ∞) then,
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• not always easy to find the unit vector  𝑎ϕ. 

ˆ ˆ ˆ
l Ra a a  

• simple approach is to determine  𝑎ϕ from: 

where,  𝑎𝑙 is the unit vector along the line current and  𝑎𝑅 is a unit vector
along the perpendicular line from the line current to the field point.
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Example – 1  (contd.) 
• This result is very useful expression to

memorize. It states that in the neighbourhood
of a linear conductor carrying a current I, the
induced magnetic field forms concentric
circles around the wire and its intensity is
directly proportional to I and inversely
proportional to distance r.
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Example – 2 

• The conducting triangular loop in 
the figure carries a current of 10A. 

Find 𝐻 at (0, 0, 5) due to side 1 of 
the loop.

 𝑎𝑥

 𝑎𝑅

α2
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𝑅

 𝑑𝑙

• Let us place the loop in the xy-plane
as shown.

Example – 3 
• A circular loop of radius 𝑎 carries a steady current 𝐼. Determine the

magnetic field 𝐻 at a point on the axis of the loop.

𝑑𝐻

𝑑𝐻𝑧

𝑑𝐻ρ

• We want to obtain expression for 𝐻
at (0, 0, z).

ˆ ˆ
ρ zR =(0,0,z) - (x,y,0)= -aa za

Clearly indicates two components of 𝐻

2

ˆ

4

RI dl a
dH

R




• Let us take an element  𝑑𝑙 at (x, y, 0)

• The magnetic field 𝑑𝐻 due to this
element is:
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Example – 3 (contd.)

𝑅

 𝑑𝑙

𝑑𝐻

𝑑𝐻𝑧

𝑑𝐻ρ

𝑑𝐻′ 𝑑𝐻′𝑧

−𝑑𝐻′ρ

• If we consider element  𝑑𝑙′ located
diametrically opposite to  𝑑𝑙 then we
observe that the z-components of the
magnetic fields due to  𝑑𝑙′ and  𝑑𝑙 add
because they are in the same
direction, but their ρ-components
cancel because they are in opposite
directions.

• Hence the net magnetic field is along
z-axis only.

• Therefore:
 

ˆ ˆ ˆcosz z z z 2 2

I cos
dH = a dH a dH a dl

4π(a + z )


 

ˆ
R

2 2 2

I dl×a Idl
dH = =

4πR 4π(a + z )
• We have:
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Example – 3 (contd.)

• Thus:
 

 ˆ 2z 2 2
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• We can also derive:
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• At the center of the loop (𝑧 = 0): ˆ
z

I
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• At a point far away from the loop (|𝑧| ≫ 𝑎):
2

3
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• For a fixed point 𝑃(0, 0, 𝑧) on the axis of the
loop, all quantities in the above expression are
constant except for  𝑑𝑙, therefore:
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Example – 4
• A solenoid, lying along z-axis, of length l and radius a consists of N turns of

wire carrying current I. show that at point P along its axis:

 2 1
ˆ cos cosz

NI
H = a

2l
 

where, θ1 and θ2 are the angle 
subtended at P by the end turns.

• Alo show that if 𝑙 ≫ 𝑎, at the center of the solenoid: ˆ
z

NI
H = a

l

• An important structure in electrical and computer engineering is the
solenoid.

𝐼

l

• A solenoid is a tube of current. However, it is different from the hollow
cylinder, in that the current flows around the tube, rather than down the
tube:
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Example – 4 (contd.)

Make use of  example-3

• The magnetic field at P
due to length 𝑑𝑧 is:

2
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• Let us consider the cross section of solenoid as shown below.
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Example – 4 (contd.)

• Therefore: sinz
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dH d
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• At the center of the Solenoid: 2 11/2
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• If 𝑙 ≫ 𝑎, then: ˆ
z
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H a

l
 
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Example – 5
• A toroidal coil is a doughnut-shaped structure (called the core) wrapped

in a closely spaced turns of wire (as shown in figure). For clarity, the turns
have been shown as spaced far apart, but in practice they are wound in a
closely spaced arrangement. The toroid is used to magnetically couple
multiple circuits and to measure the magnetic properties of materials. For

a toroid with N turns carrying a current 𝐼, determine the magnetic field 𝐻
in each of the following three regions: 𝑟 < 𝑎, 𝑎 < 𝑟 < 𝑏, and 𝑟 > 𝑏, all in
the azimuthal plane symmetry of the toroid.

𝐻
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Ampere Circuital Law 
• Earlier we learnt that the electrostatic field is conservative, meaning its

line integral along a closed contour always vanishes.

• The magnetostatic counterpart known
as Ampere’s Law is:

H J  . encl

C

H dl I

• The sign convention for the direction of contour path C in Ampere’s law is

taken so that I and 𝐻 satisfy the right-hand rule defined earlier in
connection with Biot-Savart law→ If the direction of I is aligned with the
direction of the thumb then the direction of the contour C should be
chosen along that of the other four fingers.

0E  . 0
C

E dl • This property was expressed as:

• In words, Ampere’s circuital law states that the line

integral of 𝐻 around a closed path is equal to the current
traversing the surface bounded by that path.

. encl

C

H dl I

.encl

S

I J ds We know: Apply Stoke’s
Theorem

. ( ).
C S

H dl H ds  
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Ampere Circuital Law (contd.) 

• Therefore: H J 
Maxwell’s Equation 
for Magnetostatics

Magnetostatic field is not conservative

• This Maxwell’s equation for magnetostatic
equation is referred to as Ampere’s Circuital Law: ( ) ( )H r J r 

This equation indicates that 
the magnetic flux density 

𝐻(  𝑟) rotates around current 

density  𝐽(  𝑟) --the source of 
magnetic field intensity is 

current!.

𝐵(  𝑟)

 𝐽(  𝑟)
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Applications of Ampere’s Law 

. encl

C

H dl I

Examples include: an infinite line current, an infinite sheet of 
current, and an infinitely long coaxial transmission line

In each case, we apply  𝐶 𝐻.  𝑑𝑙 = 𝐼𝑒𝑛𝑐 . For symmetrical current 

distribution, 𝐻 is either parallel or perpendicular to  𝑑𝑙. When 𝐻 is 

parallel  to  𝑑𝑙, 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

This equation holds regardless of whether the 
current distribution is symmetrical or otherwise

But 𝐻 can be determined using this 
expression only if the symmetrical current 

distribution exists
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Applications of Ampere’s Law (contd.) 

Infinite Line Current

• Let us consider an infinitely long
filamentary current along the z-axis.

• To determine 𝐻 at point P, let us form a
closed path to pass through P.

• This path is called Amperian path
(analogous to Gaussian surface).

On this path:

ˆdl d a 

I H d    
As 𝐻 is 

parallel  to  𝑑𝑙
 2I H  

For fixed ρ
ˆ

2

I
H a


 

ˆ ˆ. .
C

H dl I H a d a     

• From Ampere’s law we can write:
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Applications of Ampere’s Law (contd.) 
Infinite Sheet of Current

• Let us consider an infinite current sheet in the 𝑧 = 0 plane.

• The sheet has a uniform current density 𝐾 = 𝑘𝑦  𝑎𝑦 A/m as shown.

𝐾 = 𝑘𝑦  𝑎𝑦

• Consider the sheet as a finite
number of filaments
cascaded together

• Field doesn’t vary with 𝑥 and
𝑦 as the source doesn’t vary
with 𝑥 and 𝑦

• 𝐻𝑦 = 0, since current is

along 𝑦 − 𝑎𝑥𝑖𝑠 [field is
perpendicular to current]

• 𝐻𝑧 = 0, as two symmetric filamentary elements along 𝑥 − 𝑎𝑥𝑖𝑠 will cancel
the 𝑧 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.

• Resultant fields will be along 𝑥 − 𝑎𝑥𝑖𝑠 and doesn’t vary with 𝑥 and 𝑦.
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𝐾 = 𝑘𝑦  𝑎𝑦

Applications of Ampere’s Law (contd.) 
Infinite Sheet of Current

• Apply Ampere’s law along
1-1’-2’-2-1

.
C

H dl I

1' 2 ' 2 1

1 1 2 1

1 1' 2 ' 2

( ) ( )x z x z yH dx H dz H dx H dz K L        

Doesn’t 
vary 

with x

Zero contribution from segments 1’-2’ 
and 1-2 (𝑯𝒛 = 𝟎)

1 2x x yH L H L K L   1 2x x yH H K  
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Applications of Ampere’s Law (contd.) 

• Similarly application of Ampere’s 
law along 3-3’-2’-2-3 results into

3 2x x yH H K  

1 2x x yH H K  
3 2x x yH H K  

• Simplification gives:
1 3

2

y

x x

K
H H  2

2

y

x

K
H  

Therefore, it can be said that the field is same for all positive z
and similarly the same for all negative z

• Because of symmetry, the magnetic field intensity on one side of the
current sheet is negative of that on the other.

2

y

x

K
H  (𝒛 > 𝟎)

2

y

x

K
H   (𝒛 < 𝟎)
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Applications of Ampere’s Law (contd.) 
Infinite Sheet of Current

• If  𝑎𝑁 is the unit vector normal (outward) to the current sheet, the result
may be expressed as:

1
ˆ

2
NH K a 

• Magnetic field doesn’t depend on the distance from the infinite current

sheet → analogous to 𝐷 𝑓𝑖𝑒𝑙𝑑 of an infinite charge sheet.

1
ˆ

2
NH K a 

1
ˆ

2
s ND a

• If a second sheet of current flowing in the opposite direction, 𝐾 = −𝑘𝑦  𝑎𝑦,

is placed at 𝑧 = ℎ, then the field in the region between the sheets is:

ˆ
NH K a  (𝟎 < 𝒛 < 𝒉)

• and is zero elsewhere: 0H  (𝒛 < 𝟎, 𝒛 > 𝒉)
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Applications of Ampere’s Law (contd.) 
Infinitely Long Coaxial Transmission Line

• Let us consider coaxial
transmission line with two
concentric cylinders having
their axes along the z-axis,
where the z-axis is out of page.

• The inner conductor has radius
a and carries current I, while
the outer conductor has inner
radius b and thickness t and
carries return current –I.

• Determine field 𝐻 everywhere.

Since the current distribution is symmetric, we apply Ampere’s law 
along the Amperian path for each of the four possible regions: 0 ≤

ρ ≤ 𝑎, 𝑎 ≤ ρ ≤ 𝑏, 𝑏 ≤ ρ ≤ 𝑏 + 𝑡, ρ ≥ 𝑏 + 𝑡
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Applications of Ampere’s Law (contd.) 
Infinitely Long Coaxial Transmission Line

• For region 0 ≤ ρ ≤ 𝑎, we have:

2
ˆ

z

I
J a

a
 ˆ

zdS d d a  

2

2

0 0
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I J dS d d
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  


 

   
2

2enc

I
I

a


 

Therefore application of Ampere’s law over path L1 gives:

 
1

2

2
2

L

I
H dl H

a
 


  22

I
H

a





 

• For region 𝑎 ≤ ρ ≤ 𝑏, we have:
encI I

Therefore application of Ampere’s law over path L2 gives:

 
2

2
L

H dl H I   
2

I
H


 
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Applications of Ampere’s Law (contd.) 
Infinitely Long Coaxial Transmission Line

• For region 𝑏 ≤ ρ ≤ 𝑏 + 𝑡, we get:

.encI I J dS   Here,  𝐽 is the current density of the outer 
conductor and is along − 𝑎𝑧

 
2 2

ˆ
z

I
J a

b t b
 

  
 

 

2

2 2
0

enc

b

I
I I d d

b t b



 

  
  

 
  
 

 
2 2

2
1

2
enc

b
I I

t bt

 
  

 

2
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H


 

2 2

2
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2 2

I b
H

t bt






 
   

 
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Applications of Ampere’s Law (contd.) 
Infinitely Long Coaxial Transmission Line

• For region ρ ≥ 𝑏 + 𝑡, we get: 0encI I I   0H 
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Example – 6
• A toroidal coil is a doughnut-shaped structure (called the core) wrapped

in a closely spaced turns of wire (as shown in figure). For clarity, the turns
have been shown as spaced far apart, but in practice they are wound in a
closely spaced arrangement. The toroid is used to magnetically couple
multiple circuits and to measure the magnetic properties of materials. For

a toroid with N turns carrying a current 𝐼, determine the magnetic field 𝐻
in each of the following three regions: 𝑟 < 𝑎, 𝑎 < 𝑟 < 𝑏, and 𝑟 > 𝑏, all in
the azimuthal plane symmetry of the toroid.

𝐻



Indraprastha Institute of 

Information Technology Delhi ECE230

Example – 6 (contd.)
𝐻

• From Symmetry: It is apparent that 𝐻 is
uniform in the azimuthal direction.

• For circular Amperian path 𝑟 < 𝑎, there
will be no current through the surface of
the contour.

• Similarly, for circular Amperian path 𝑟 >
𝑏, there will be no current through the
surface of the contour.

• Therefore, 𝐻 = 0 in the region external to the core.
• For region inside the core: Let us construct path of radius 𝑟.

• For each loop of radius 𝑟, we know that the field 𝐻 at the center of the
loop points along the axis of the loop, which in this case is the 𝜑 −
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.

• Now solve using Ampere’s Circuital Law!!!
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Magnetic Flux Density

• The magnetic flux density is similar to electric flux density 𝐷.

Where, μ0 is a constant known as permeability of free space. The constant is
in henrys per meter (H/m) and has the value:

7

0 4 10 /H m   

• The magnetic flux through a surface 𝑆 is given by: .
S

B ds  
Webers

(Wb)

0B H
• 𝐸 = ε0𝐸 in free space → similarly, the magnetic flux

density 𝐵 is related to the magnetic field intensity 𝐻 as:

• Magnetic flux line is a path to which 𝐵 is
tangential at every point on the line.

• It is the line along which the needle of a
magnetic compass will orient itself if
placed in the presence of a magnetic field.

For example, the magnetic flux lines due to a 
straight long wire is
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Magnetic Flux Density (contd.)
Note that each flux lines is closed and has no beginning or end.  It is 

generally true that magnetic flux lines are closed and do not cross each 
other regardless of the current distribution.

• In an electrostatic field, the flux passing through a
closed surface is the same as charge enclosed

(ψ =  𝐷. 𝑑𝑠 = 𝑄) → thus it is possible to have

an isolated electric charge such that flux lines are
not necessarily closed.

• Unlike electric flux lines, magnetic flux lines
always close upon themselves → therefore, the
total flux through a closed surface in a magnetic

field must be zero (ψ =  𝐵. 𝑑𝑠 = 0) → not

possible to have isolated magnetic poles or
magnetic charges.
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Magnetic Flux Density (contd.)Magnetic Flux Density (contd.)
• If we want an isolated

magnetic pole by dividing a
magnetic bar successively into
two, we end up with pieces
each having north and south
poles → we find it impossible
to separate the north pole
from the south pole.

. 0B ds 
Law of conservation of magnetic flux or 

Gauss’s law for magnetostatic fields

. . 0
v

B ds Bdv   

Divergence 
Theorem . 0B  Maxwell Equation

Magnetic fields have no source or sinks ↔ Magnetic 
field lines are always continuous
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Maxwell’s Equations for Static Fields

Differential Form Integral Form Remarks

. vD  

. 0B 

0E 

H J 

. v

S v

D ds dv 

. 0
S

B ds 

. 0
C

E dl 

. .
C S

H dl J ds 

Gauss’s Law

Ampere’s Law

Conservative Nature of 𝑬

None existence of magnetic 
monopole

Magnetic Scalar and Vector Potentials
• Some electrostatic problems became simpler by relating electric field

intensity 𝐸 𝐸 = −∇𝑉 .

• Similarly, one can define potential associated with 𝐻 or 𝐵.

• The idea is that 𝐵 should be defined in such a way that divergence of 𝐵
should be always zero.

• Actually, magnetic potential could be scalar denoted as Vm or vector

denoted as  𝐴.
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Magnetic Scalar and Vector Potentials

• We define the magnetic scalar potential as:
mH V 

This holds for any scalar V This holds for any vector  𝐴

( ) 0V   .( ) 0A  
• Let us use these

two identities:

 mJ H V  

( ) 0V  
This Form

Thus magnetic scalar  potential is valid 

only in a region where  𝐽 = 0

Vm satisfies Laplace’s equation 2 0mV 

  0mJ H V   

Very useful term for 
defining parameters 

of a permanent 
magnet

• Furthermore, . 0B  .( ) 0A  

Gives definition of vector magnetic potential

B A
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Magnetic Scalar and Vector Potentials (contd.)
• We defined:

04

dQ
V

r
 

.
S

B ds  

• We can express flux alternatively as:

 .
S

A ds   .
C

A dl  
Stoke’s Theorem

Thus the magnetic flux through a given area can be found 
using the magnetic vector potential

• Similarly we can define: 0

4
C

I dl
A

R




  For line current

0

4
C

Kds
A

R




  For surface current 0

4
v

Jdv
A

R




  For volume current

The use of magnetic vector potential provides a powerful approach 
to solving EM problems, particularly those relating to antennas → 

For antennas, its more convenient to find  𝐴 than finding 𝐵
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Example – 7 

• Given the magnetic vector potential  𝐴 = −
ρ2

4
 𝑎𝑧

Wb

m
, calculate the total

magnetic flux crossing the surface ϕ =
𝜋

2
, 1 ≤ 𝜌 ≤ 2 𝑚, 0 ≤ 𝑧 ≤ 5 𝑚.

Method-1: ˆzA
B A a




  


ˆdS d dza

• Therefore: .
S

B ds  
5 2

0 1

1

2
z

d dz


  
 

   3.75Wb 
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Example – 7 (contd.) 

Method-2:

• We use: 1 2 3 4.
C

A dl        

𝐵

 𝐴

Cwhere, C is the path bounding surface
S; ψ1, ψ2, ψ3, and ψ4 are respectively

the evaluations of   𝐴.  𝑑𝑙 along

segments of C labeled 1 to 4.

• Since  𝐴 has only z-component: 1 3 0  

• Therefore: 
5 0

2 2

2 4

0 5

1
(1) (2)

4
dz dz  

 
     

 
  3.75Wb 
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Example – 8
• A current distribution gives rise to the vector magnetic potential  𝐴 =

𝑥2𝑦 𝑎𝑥 + 𝑦2𝑥  𝑎𝑦 − 4𝑥𝑦𝑧  𝑎𝑧
𝑊𝑏

𝑚
. Calculate the following:

(a) 𝐵 at (−1, 2, 5)
(b)The flux through the surface defined by z = 1, 0 ≤ x ≤ 1,−1 ≤ y ≤ 4

(a)  𝐵 = 𝛻 ×  𝐴 = −4𝑥𝑧 − 0  𝑎𝑥 + 0 + 4𝑦𝑧  𝑎𝑦 + (𝑦2 − 𝑥2)  𝑎𝑧

∴ 𝐵 −1, 2, 5 = 20 𝑎𝑥 + 40 𝑎𝑦 + 3 𝑎𝑧

(b) The flux through the given surface:

.
S

B ds   20Wb  
4 1

2 2

1 0y x

y x x y
 

    

Alternatively:

.
C

A dl   20Wb 
1 4 0

2 2 2

0 1 1

( 1) (1) (4) 0x x y y x x


         


