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• Electrostatic Boundary Value Problems (contd.)
• Energy Storage in a Capacitor
• Magnetostatics
• Biot-Savart Law 
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Coax Cross-Section

• A common form of a transmission line is the coaxial cable.

Outer Conductor

Inner Conductor 0V



The coax has an outer radius b, and an 
inner radius a. The space between the 

conductors is filled with dielectric 
material of permittivity ε .

Say a voltage V0 is placed across the conductors, such that the electric 
potential of the outer conductor is zero, and the electric potential of the 

inner conductor is V0.

Example – 1: The Electrostatic Fields of a Coaxial Line
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• The potential difference between the inner and outer conductor is
therefore V0 – 0 = V0 volts.

Q: What electric potential field 𝑉  𝑟 , electric field 𝐸(  𝑟), and charge density
ρ𝑠(  𝑟) is produced by this situation?

Yikes! Where do we start ?

Example – 1 (contd.)

a) Satisfy the differential equations of electrostatics (e.g., Poisson’s,
Laplace’s, Gauss’s).

b) Satisfy the electrostatic boundary conditions.

A: We must solve a boundary-value problem! We must find solutions that:
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We might start with the electric potential field 𝑉  𝑟 , since it is a 
scalar field.

a) The electric potential function
must satisfy Poisson’s equation:

2

0

( )
( ) v r

V r





 

b) It must also satisfy the boundary conditions:
0( )V a V   ( ) 0V b  

• Consider first the dielectric region (𝑎 < ρ < 𝑏) . Since the
region is a dielectric, there is no free charge, and:

( ) 0v r 

Example – 1 (contd.) 

• Therefore, Poisson’s equation reduces to 
Laplace’s equation: ( ) 0v r 

• This particular problem (i.e., coaxial line) is directly solvable
because the structure is cylindrically symmetric. Rotating the
coax around the z-axis (i.e., in the  𝑎ϕ direction) does not
change the geometry at all. As a result, we know that the
electric potential field is a function of ρ only! i.e.,:

( ) ( )V r V 
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• This make the problem much easier. Laplace’s equation becomes:

2 ( ) 0V r  2 ( ) 0V  

1 ( )
0

V 


  

  
  

  

1 ( )
0 0 0

V 


  

  
   

  

Example – 1 (contd.) 

Be very careful during this step! Make 
sure you implement the Laplacian

operator correctly.
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The Parallel Plate Capacitor

Where:
𝑉0 = the potential difference between the plates
S = surface area of each conducting plate
d = distance between plates
ε = permittivity of the dielectric between the plates

• Consider the geometry of a parallel plate capacitor:

d

Recall that we determined 
the fields and surface charge 
density of an infinite pair of 
parallel plates. We can use 

those results to approximate 
the fields and charge 
densities of this finite 

structure, where the area of 
each plate is S.
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The Parallel Plate Capacitor (contd.)
• For example, we determined that the surface

charge density on the upper plate is:
0( )s

V
r

d


  

• The total charge on the upper plate is therefore:

( )s

S

Q r ds



  0

S

V
Q ds

d





 
0

S

V
Q ds

d





 
0V S

Q
d




• The capacitance of this structure is therefore:

Q
C

V
 0

0

1V S
C

d V

   
   
  

S
C

d


 

1) Increasing surface area S.
2) Decreasing separation distance d.
3) Increasing the dielectric permittivity ε.

Therefore, we can increase the capacitance of 
a parallel plate capacitor by:
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The Parallel Plate Capacitor (contd.)

• Consider now the structure:
Note the two 
upper plates 

form one 
conducting 

structure, and 
the two bottom 

plates form 
another.

Q: What is the capacitance between these two conducting structures?

A: The potential difference between them is V0. The total charge on one
conducting structure is simply the sum of the charges on each plate:

0 1 0 2
1 2

V S V S
Q Q Q

d d

 
   



Indraprastha Institute of 

Information Technology Delhi ECE230

The Parallel Plate Capacitor (contd.)

• Therefore, the capacitance of this structure is:

 0 1 2

0

1V S SQ
C

V d V

   
    

  

 1 2S S
C

d

 


1 2S S
C

d d

 
 

1 2C C C 

But you knew this! The total capacitance of 
two capacitors in parallel is equal to the sum 

of each capacitance.
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b


Coax Cross-Section

0V




Capacitance of a Coaxial Transmission Line

• Recall the geometry of a coaxial transmission line:

Outer Conductor

Inner Conductor

• In earlier problem, you can determine, the
surface charge density on the inner
conductor is:  

0 1
( )

ln /
sa

V
r

b a a


  ρ = 𝑎
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Capacitance of a Coaxial Transmission Line (contd.)

• The total charge 𝑄 on the inner conductor of a coax of length l is
determined by integrating the surface charge density across the
conductor surface:

( )s

S

Q r ds



   

2

0

0 0

1

ln /

l
V

Q d dz
b a a




   

 

2

0

0 0

1

ln /

l
V

Q d dz
b a a




   
 

2

0

0 0

1

ln /

l

a

V
Q d dz

b a a






 



 
  
 

 

 
0 2

ln /

V
Q l

b a


 
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Capacitance of a Coaxial Transmission Line (contd.)

• We can now determine the capacitance of this coaxial line!

 
2

ln /
C l

b a




• This value represents the capacitance of a coaxial line of length l. A more
useful expression is the capacitance of a coaxial line per unit length (e.g.
farads/meter). We find this simply by dividing it by length l:

 
2

ln /

C

l b a




𝐹𝑎𝑟𝑎𝑑𝑠

𝑚𝑒𝑡𝑟𝑒

 
0

0

1
2

ln /

Q V
C l

V b a V




  
     

  

• Since 𝐶 = 𝑄/𝑉 , and since the potential difference between the
conductors is 𝑉 = 𝑉0, we find:
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Capacitance of a Coaxial Transmission Line (contd.)

 
2

ln /
C l

b a




Note the longer the transmission line, 
the greater the capacitance!

This can cause great difficulty if the voltage across the transmission 
line conductors is time varying (as it almost certainly will be!).

For long transmission lines, engineers cannot consider a transmission line 
simply as a “wire” conductor that connects circuit elements together. 

Instead, capacitance (and inductance) make the transmission line itself a 
circuit element!

In this case, engineers must use transmission line theory to analyze circuits!
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z

z=0

z=-d

𝜌𝑠−(  𝑟)

𝜌𝑠+(  𝑟)
𝑉0

Energy Storage in Capacitors

• Recall in a parallel plate capacitor, a surface charge distribution 𝜌𝑠+(  𝑟) is
created on one conductor, while charge distribution 𝜌𝑠−(  𝑟) is created on
the other.

Q: How much energy is stored by these charges?



Indraprastha Institute of 

Information Technology Delhi ECE230

Energy Storage in Capacitors (contd.)

• We learnt that the energy stored by a 
charge distribution is:

1
( ) ( )

2
e v

v

W r V r dv 

• The equivalent equation for surface charge
distributions is:

1
( ) ( )

2
e s

S

W r V r dS 

• For the parallel plate capacitor, we must integrate over both plates:
1 1

( ) ( ) ( ) ( )
2 2

e s s

S S

W r V r dS r V r dS 

 

   

• But on the top plate (i.e., S+), we know that: 𝑉 𝑧 = −𝑑 = 𝑉0

• While on the bottom plate (i.e., S-): 𝑉 𝑧 = 0 = 0

• Therefore: 0 0
( ) ( )

2 2
e s s

S S

V
W r dS r dS 

 

   
0 ( )

2
e s

S

V
W r dS



 

0

1

2
eW QV 

2

0

1

2
eW CV
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Energy Storage in Capacitors (contd.)

21

2
eW CV

It shows that the energy stored within a capacitor is 
proportional to the product of its capacitance and the 

squared value of the voltage across the capacitor.

 
2

2

1

2
e

V
W volume

d




• Recall that we also can determine the stored energy from the fields within
the dielectric:

1
( ). ( )

2
e

v

W D r E r dv 

• Here 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑆𝑑, therefore: 21

2
e

S
W V

d




21

2
e

S
W V

d



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• A coaxial capacitor consists of two concentric, conducting, cylindrical
surfaces, one of radius a and another of radius b. The insulating layer
separating the two conducting surfaces is divided equally into two semi-
cylindrical sections, one filled with dielectric ε1 and the other filled with
dielectric ε2.

Example – 2

(a) Develop an expression for C in terms
of the length l and the given
quantities.

(b) Evaluate the value of C for a = 2 mm,
b = 6 mm, εr1 = 2, εr2 = 4, and l = 4 cm.
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Example – 2 (contd.)

(a) For the indicated voltage polarity, the electric field inside the capacitor

exists in only the dielectric materials and points radially inward. Let 𝐸1

be the field in dielectric ε1 and 𝐸2 be the field in dielectric ε2.

(b) At the interface between the two dielectric sections, 𝐸1 is parallel to 𝐸2

and both are tangential to the interface.

• At r = a (surface of inner conductor), in medium 1, the boundary

condition on 𝐷, leads to:

1 11 1
ˆ

s nD E a   1 1
ˆ ˆ

sEa a    1 11 1
ˆ

s nD E a  

1 11 1
ˆ

s nD E a  

(a) Since boundary conditions require that the tangential components of

𝐸1 and 𝐸2 be the same, it follows that:
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Example – 2 (contd.)

• Similarly, in medium 2: 2 2s E  

• Thus, the electric fields will be the same in the two dielectrics, but the
charge densities will be different along the two sides of the inner
conducting cylinder.

• Since the same voltage applies for the two sections of the capacitor, we
can treat them as two capacitors in parallel. For first half of the cylinder
that includes dielectric ε1, we can express:

 
1

1
ln /

C l
b a


 Only half cylinder

• Similarly:

 
2

2
ln /

C l
b a




Therefore:

 
 

1 2

1 2
ln /

l
C C C

b a

  
  
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Magnetostatics
• Magnetostatics is the branch of electromagnetics dealing with the effects

of electric charges in steady motion (i.e, steady current or DC).

• The fundamental law of magnetostatics is Ampere’s law of force.

• Ampere’s law of force is analogous to Coulomb’s law in electrostatics.

• In magnetostatics, the magnetic field is produced by steady currents.

• The magnetostatic field does not allow for

• inductive coupling between circuits

• coupling between electric and magnetic fields
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Magnetostatic Fields

• Static magnetic fields are characterized by 𝐻 or 𝐵.

• These are analogous to 𝐸 or 𝐷
• A magnetostatic field is produced by a constant current flow (or direct

current).
• These currents could be due to magnetization currents as in permanent

magnets, electron beam currents as in vacuum tubes, or conduction
currents as in current-carrying wires.

• Foremost, study of magnetostatics is not a dispensable luxury.
• Its indispensable necessity.
• Motors, Transformers, Microphones, Compasses, Telephone Bell Ringers,

Television Focusing Controls, Advertising Displays, Magnetically Levitated
High Speed Trains, Volatile and Non-Volatile Memories, Magnetic
Separators etc could not have been developed without an understanding
of magnetostatic phenomena.
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Maxwell’s Equations for Magnetostatics
• From the point form of Maxwell’s equations, we

find that the static case reduces to another (in
addition to electrostatics) pair of decoupled
differential equations involving magnetic flux

density 𝐵(  𝑟) and current density  𝐽(  𝑟):

. ( ) 0B r 

. ( ) 0B r 

• We know from the Lorentz force equation that the

magnetic flux density 𝐵(  𝑟) will apply a force on

current density  𝐽(  𝑟) flowing in volume 𝑑𝑣 equal to:
 ( ) ( )d F J r B r dv 

• Current density  𝐽(  𝑟) is of course
expressed in units of Amps/meter2. The

units of magnetic flux density 𝐵(  𝑟) are:

𝑁𝑒𝑤𝑡𝑜𝑛. 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑜𝑢𝑙𝑜𝑚𝑏.𝑚𝑒𝑡𝑒𝑟
≡

𝑊𝑒𝑏𝑒𝑟

𝑚𝑒𝑡𝑒𝑟2 ≡ 𝑇𝑒𝑠𝑙𝑎

The concept of magnetic flux is much more important and useful than the 
concept of electric flux, as there is no such thing as magnetic charge.
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Maxwell’s Equations for Magnetostatics (contd.)

First, we note that equations specify both the divergence and curl of 

magnetic flux density 𝐵(  𝑟), thus completely specifying this vector field.

Second, it is apparent that the magnetic flux density 𝐵(  𝑟) is not 

conservative (i.e, ∇ × 𝐵(  𝑟) = μ0
 𝐽(  𝑟) ≠ 0).

Finally, we note that the magnetic flux density is a 

solenoidal vector field (i.e, ∇. 𝐵(  𝑟) = 0).

• Consider the first of the magnetostatic equations: . ( ) 0B r 

This equation is sometimes referred to as Gauss’s Law for magnetics, 
for its obvious similarity to Gauss’s Law of electrostatics.

This equation essentially states that the magnetic flux density does 
not diverge nor converge from any point. In other words, it states 

that there is no such thing as magnetic charge !
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Maxwell’s Equations for Magnetostatics (contd.)

• This of course is
consistent with our
understanding of
solenoidal vector fields.
The vector field will
rotate about a point,
but not diverge from it.

Q: Just what does the magnetic flux density 𝐵(  𝑟) rotate around ?

A: Look at the second magnetostatic equation!

• The second magnetostatic equation is
referred to as Ampere’s Circuital Law: 0( ) ( )B r J r 

This equation indicates that the magnetic flux density 𝐵(  𝑟) rotates around 

current density  𝐽(  𝑟) --the source of magnetic flux density is current!.
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Maxwell’s Equations for Magnetostatics (contd.)

𝐵(  𝑟)

 𝐽(  𝑟)

The Integral Form of Magnetostatics
• Say, we evaluate the surface integral of the

point form of Ampere’s Law over some
arbitrary surface S.

0( ). ( ).
S S

B r ds J r ds  

• Using Stoke’s Theorem, we can write the
left side of the above equation as:

( ). ( ).
S C

B r ds B r dl  

• We also recognize that the right side of the equation is: 0 0( ).
S

J r ds I 

• where I is the current flowing through surface S.
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The Integral Form of Magnetostatics (contd.)

• Therefore, we find the integral form of Ampere’s Law
(Note the direction of I is defined by the right-hand rule):

0( ).
C

B r dl I

Ampere’s law states that the line integral of 𝐵(  𝑟) around a closed 
contour C is proportional to the total current I flowing through this 

closed contour (𝐵(  𝑟) is not conservative!).

• Likewise, we can take a volume integral over both

sides of the magnetostatic equation ∇. 𝐵(  𝑟) = 0:
. ( ) 0

v

B r dv 

• But wait! The left side can be rewritten using the Divergence Theorem

. ( ) ( ).
v S

B r dv B r ds   where S is the closed surface 
that surrounds volume V.

• Therefore, we can write the integral form of ∇. 𝐵(  𝑟) = 0 as: ( ). 0
S

B r ds 

• Summarizing, the integral form of the
magnetostatic equations are:

( ). 0
S

B r ds  0( ).
C

B r dl I
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Q: Given some field 𝐵(  𝑟), how can we

determine the source  𝐽(  𝑟) that created it?

Magnetic Vector Potential

A: Easy!      𝐽(  𝑟) =
∇×𝐵(  𝑟)

μ0

Q: OK, given some source  𝐽(  𝑟), how can we

determine what field 𝐵(  𝑟) it creates?
A: Magnetic Vector
Potential !

Biot-Savart’s Law 
• It states that: differential magnetic

field intensity 𝑑𝐻(  𝑟) produced at
point 𝑃, shown in figure, by the
differential current element 𝐼  𝑑𝑙 is
related as:

( ) sindH r Idl 
2

1
( )dH r

R


α
 𝑎𝑅

 𝑑𝑙
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• Combining them together results into:

2
( ) sin

k
dH r Idl

R


In SI units
2

1
( ) sin

4
dH r Idl

R





Biot-Savart’s Law (contd.)

• From the definition of cross
product, we can transform the
equation in vector form as:

2

ˆ
( )

4

RI dl a
dH r

R


 3

( )
4

I dl R
dH r

R




• This direction of 𝑑𝐻(  𝑟) can be obtained from
right-hand rule: right-hand thumb points in the
direction of current and the right hand fingers

encircle the wire in the direction of 𝑑𝐻  𝑟 .

𝐼

𝑑𝐻(  𝑟)



Indraprastha Institute of 

Information Technology Delhi ECE230

𝐻(  𝑟) (or  𝐼) is 
out 

𝐻(  𝑟) (or  𝐼) is 
in 

Biot-Savart’s Law (contd.) 
• It is a standard practice to represent

the direction of 𝐻(  𝑟) (or current 𝐼) as:

α
 𝑎𝑅

 𝑑𝑙

𝑑𝐻  𝑟 into the page

α
 𝑎𝑅

 𝑑𝑙

𝑑𝐻  𝑟 out of the page

• For total 𝐻(  𝑟) due to a finite sized conductor, need to sum up the
contributions due to all the current elements making up the conductor.

Magnetic field due 
to line current

2

ˆ
( )

4

R

L

I dl a
H r

R


 

• Therefore the Biot-Savart law becomes:
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Biot-Savart’s Law (contd.) 

2

ˆ1
( )

4

R

L

K a
H r ds

R


 

• If we define 𝐾 as the surface current density then the total magnetic field

𝐻(  𝑟) can be expressed as:

𝐾

𝐾𝑑𝑠

2

ˆ1
( )

4

R

L

Kds a
H r

R


 

• Similarly, we can express the magnetic field 𝐻(  𝑟) due to volume current  𝐽
as:

 𝐽
 𝐽𝑑𝑣

2

ˆ1
( )

4

R

L

J a
H r dv

R


 


