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• Electrostatic Boundary Conditions (contd.)
• Boundary Value Problems 
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Example – 1: Boundary Conditions

• Two slabs of dissimilar dielectric material share a common boundary, as
shown below. The respective electric field is also shown.

𝜀2 = 3ε0

𝜀1 = 6ε0

2 ˆ ˆ( ) 2 6x yE r a a 

1 1 1
ˆ ˆ( ) x x y yE r E a E a 

x

y

In each dielectric region, let’s determine (in terms of ε0):
(1) the electric field, (2) the electric flux density, (3) the bound volume
charge density (i.e., the equivalent polarization charge density) within the
dielectric, and (4) the bound surface charge density (i.e., the equivalent
polarization charge density) at the dielectric interface
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• Since we already know the electric field in the second region, let’s
evaluate region 2 first.

 2 0
ˆ ˆ( ) 3 2 6x yD r a a  2 0 0

ˆ ˆ( ) 6 18x yD r a a   

• Likewise, the polarization vector within the region is:

2 20 2( ) ( )eP r E r    2 0 2
ˆ ˆ( ) 1 2 6r x yP r a a   

  2 0
ˆ ˆ( ) 3 1 2 6x yP r a a    2 0 0

ˆ ˆ( ) 4 12x yP r a a   

Example – 1 (contd.)

2 22( ) ( )D r E r

• We can easily determine the electric flux density within the region:

Q: Why did we determine the polarization vector? It is not one of the
quantities this problem asked for!
A: True! But the problem did ask for the equivalent bound charge densities
(both volume and surface) within the dielectric. We need to know

polarization vector 𝑃(  𝑟) to find this bound charge!
• Recall the bound volume charge density is: ( ) . ( )vp r P r  

• and the bound surface charge density is: ˆ( ) ( ).sp nr P r a 
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• the volume bound charge density within the region 2 is:

22( ) . ( )vp r P r    2 0 0
ˆ ˆ( ) . 4 12vp x yr a a    

2( ) 0vp r 

Example – 1 (contd.)

• However, we find that the surface bound charge density is not zero!
• Note that the unit vector normal to the surface of the bottom dielectric

slab is  𝑎𝑛2=  𝑎𝑦 :

x

y 𝑎𝑛=  𝑎𝑦

• Since the polarization vector is constant, we know that its value at the
dielectric interface is likewise equal to 4ε0  𝑎𝑥 + 12ε0  𝑎𝑦 . Thus, the
equivalent polarization (i.e., bound) surface charge density on the top of
region 2 (at the dielectric interface) is:

22 2
ˆ( ) ( ).sp b b nr P r a  2 0( ) 12sp br   2 0 0

ˆ ˆ ˆ( ) 4 12 .sp b x y yr a a a   
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• Let’s determine the quantities for region 1 (i.e., the top dielectric slab).
Q1: How the heck can we do this? We don’t know anything about the
fields in region 1 !

A1: True! We don’t know 𝐸1(  𝑟) or 𝐷1(  𝑟) or even 𝑃1(  𝑟). However, we

know the next best thing—we know 𝐸2(  𝑟) and 𝐷2(  𝑟) and even 𝑃2(  𝑟)!
Q2: Huh!?!
A2: We can use boundary conditions to transfer our solutions from
region 2 into region 1!

Example – 1 (contd.)

• At the dielectric interface, the vector components of the electric fields

tangential to the interface are 𝐸1𝑡  𝑟𝑏 = 𝐸1𝑥  𝑎𝑥 and 𝐸2𝑡  𝑟𝑏 = 2 𝑎𝑥:

x

y
𝐸1𝑡  𝑟𝑏 = 𝐸1𝑥  𝑎𝑥

𝐸2𝑡  𝑟𝑏 = 2 𝑎𝑥

• Thus, applying the boundary condition 𝐸1𝑡  𝑟𝑏 = 𝐸2𝑡  𝑟𝑏 , we find:

1
ˆ ˆ2x x xE a a

1 2xE 
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• Likewise, we note that at the dielectric interface, the vector components

of the electric fields normal to the interface are 𝐸1𝑛  𝑟𝑏 = 𝐸1𝑦  𝑎𝑦 and

𝐸2𝑛  𝑟𝑏 = 6 𝑎𝑦:

x

y𝐸1𝑛  𝑟𝑏 = 𝐸1𝑦  𝑎𝑦

𝐸2𝑛  𝑟𝑏 = 6 𝑎𝑦

• Here, we can apply a second boundary condition, ε1𝐸1𝑛  𝑟𝑏 = ε2𝐸2𝑛  𝑟𝑏 :

0 1 0
ˆ ˆ6 * 3 *6y y yE a a  1

ˆ ˆ3y y yE a a 1 3yE 

• Thus, the electric field in the top region is:

1 1 1
ˆ ˆ( ) x x y yE r E a E a  1 ˆ ˆ( ) 2 3x yE r a a  

Example – 1 (contd.)

• The electric flux density is:

1 11( ) ( )D r E r 1 0 0
ˆ ˆ( ) 12 18x yD r a a   
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• Actually, instead of applying boundary conditions to 𝐸2(  𝑟), we could

have applied them to electric flux density 𝐷2(  𝑟):

2 0 0
ˆ ˆ( ) 6 18x yD r a a  

• We know that the electric flux density
within region 1 must be constant, i.e.:

1 1 1
ˆ ˆ( ) x x y yD r D a D a 

Example – 1 (contd.)

• The vector fields 𝐷1(  𝑟) and 𝐷2(  𝑟) at the interface are related by the
boundary conditions:

1 2

1 2

( ) ( )t tb bD r D r

 


1 2( ) ( )n nb bD r D r

• After simplification, we find that the electric flux density in region 1 is:

1 0 0
ˆ ˆ( ) 12 18x yD r a a   Precisely the same result 

as before!
• We can then find the electric field in region 1 as:

1
1

1

( )
ˆ ˆ( ) 2 3x y

D r
E r a a


   the same result as 

before!
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• Now, finishing this problem, we need to find the polarization vector 𝑃1(  𝑟):

 1 10 1( ) 1 ( )rP r E r     1 0
ˆ ˆ( ) 6 1 2 3x yP r a a  

1 0 0
ˆ ˆ( ) 10 15x yP r a a   

• Thus, the volume charge density of bound charge is again zero:

11( ) . ( )vp r P r    1 10 1( ) 1 ( )rP r E r   1( ) 0vp r 

However, we again find that the surface bound charge 
density is not zero!

Example – 1 (contd.)
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• Note that the unit vector normal to the bottom surface of the top
dielectric slab points downward, i.e.,  𝑎𝑛1 = − 𝑎𝑦:

x

y

 𝑎𝑛1 = − 𝑎𝑦

• Since the polarization vector is constant, we know that its value at the
dielectric interface is likewise equal to:

1 0 0
ˆ ˆ( ) 10 15x yP r a a  

• Thus, the equivalent polarization (i.e., bound) surface charge density on
the bottom of region 1 (at the dielectric interface) is:

11 1
ˆ( ) ( ).sp b b nr P r a  1 0( ) 15sp br      1 0 0

ˆ ˆ ˆ( ) 10 15 .sp b x y yr a a a    

• Now, we can determine the net surface charge density of bound charge
that is lying on the dielectric interface:

1 2( ) ( ) ( )sp b sp b sp br r r    0 0 0( ) 15 12 3sp br       

Example – 1 (contd.)
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Example – 2 
• In the following figure, the x-y plane is a charge free boundary separating

two dielectric media with permittivities ε𝑟1 and ε𝑟2. If the electric field in

medium 1 is 𝐸1 = 𝐸1𝑥  𝑎𝑥 + 𝐸1𝑦  𝑎𝑦 + 𝐸1𝑧  𝑎𝑧, find (a) the electric field 𝐸2 in

medium 2, and (b) the angles θ1 and θ2.

𝐸1

𝐸2

𝐸1𝑡

𝐸1𝑛

𝐸2𝑡

𝐸2𝑛

Let, 

𝐸2 = 𝐸2𝑥  𝑎𝑥 + 𝐸2𝑦  𝑎𝑦 + 𝐸2𝑧  𝑎𝑧

• Here, the normal to the boundary
is  𝑎𝑧

• Therefore, the x and y components
are tangential and z components
are normal to the boundary

• At the charge free interface, the

tangential components of 𝐸 and

normal component of 𝐷 are
continuous.
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Example – 2 (contd.) 

• Therefore

𝐸2𝑥 = 𝐸1𝑥 𝐸2𝑦 = 𝐸1𝑦 𝐷2𝑧 = 𝐷1𝑧

Tangential Components
Normal 

Component

ε2𝐸2𝑧 = ε1𝐸1𝑧

• Thus, 

𝐸2 = 𝐸2𝑥  𝑎𝑥 + 𝐸2𝑦  𝑎𝑦 + 𝐸2𝑧  𝑎𝑧 = 𝐸1𝑥  𝑎𝑥 + 𝐸1𝑦  𝑎𝑦 +
ε1

ε2

𝐸1𝑧  𝑎𝑧
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Example – 2 (contd.) 

• The tangential components of 𝐸1 and 𝐸2 are: 

2 2

1 1 1t x yE E E  2 2

2 2 2t x yE E E 

• Therefore the angles θ1 and θ2 can be written as: 

𝐸1

𝐸2

𝐸1𝑡

𝐸1𝑛

𝐸2𝑡

𝐸2𝑛

1
1

1

tan t

n

E

E
 

2 2

1 1

1

1

tan
x y

z

E E

E





2
2

2

tan t

n

E

E
 

2 2

1 1

2

1
1

2

tan
x y

z

E E

E









 
 
 

2 2

2 1 1t x yE E E 

• The two angles are related as:

1
1

1

tan t

n

E

E
 
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Example – 3
• Find 𝐸1 in the following figure, if 𝐸2 = 2 𝑎𝑥 − 3 𝑎𝑦 + 3 𝑎𝑧 (V/m), ε1 = 2ε0,

ε2 = 8ε0 and the boundary is charge free.

𝐸1

𝐸2

𝐸1𝑡

𝐸1𝑛

𝐸2𝑡

𝐸2𝑛

• Given that the x–y plane is the
boundary between the two
media, the x- and y-components

of 𝐸2 are parallel to the
boundary, and therefore are the
same across the two sides of the
boundary. Thus,

𝐸1𝑥 = 𝐸2𝑥 = 2 𝐸1𝑦 = 𝐸2𝑦 = −3

For the z-component

ε1𝐸1𝑧 = ε2𝐸2𝑧
0

1 2

0

8
12

2
z zE E




 

• Therefore: 𝐸1 = 𝐸1𝑥  𝑎𝑥 + 𝐸1𝑦  𝑎𝑦 + 𝐸1𝑧  𝑎𝑧 𝐸1 = 2 𝑎𝑥 − 3 𝑎𝑦 + 12 𝑎𝑧
V/m
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Example – 4
• Repeat example – 3 for a boundary with surface charge density ρ𝑠 =

3.54 × 10−11 𝐶/𝑚2.

𝐸1𝑥 = 2 𝐸1𝑦 = −3From example-3:

For z-component:
1 1 2 2z z sE E   

2 2
1

1

s z
z

E
E

 




 

11

0
1

0

3.54 10 8 3

2
zE





  
  1 14zE 

• Therefore: 𝐸1 = 𝐸1𝑥  𝑎𝑥 + 𝐸1𝑦  𝑎𝑦 + 𝐸1𝑧  𝑎𝑧

𝐸1 = 2 𝑎𝑥 − 3 𝑎𝑦 + 14 𝑎𝑧
V/m



Indraprastha Institute of 

Information Technology Delhi ECE230

Example – 5
• Given that 𝐸1 = 10 𝑎𝑥 − 6 𝑎𝑦 +

12 𝑎𝑧 V/m in following figure. Find

(a) 𝑃1, (b) 𝐸2 and the angle 𝐸2 makes
with the y-axis, (c) the energy
density in each region.

1 ˆ ˆ ˆ( ) 0.1768 0.1061 0.2122x y zP r a a a    𝑛𝐶
𝑚2

𝐸2 = 10 𝑎𝑥 − 4 𝑎𝑦 + 12 𝑎𝑧
V/m

𝜃2 = 75.64°

𝑊𝐸1 = 3.7136  𝑛𝐽
𝑚3 𝑊𝐸2 = 5.1725  𝑛𝐽

𝑚3
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• A silver-coated sphere of radius 5cm carries a total charge of 12nC

uniformly distributed on its surface in free space. Calculate (a) |𝐷| on the

surface of the sphere, (b) 𝐷 external to the sphere, (c) the total energy
stored in the field.

Example – 6

381.97D   𝑛𝐶
𝑚2

2

0.955
ˆ

rD a
r

  𝑛𝐶
𝑚2

𝑊 = 12.96 𝜇𝐽
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Example – 7
• A dielectric interface is defined by 4𝑥 + 3𝑦 = 10𝑚. The region including

the origin is free space, where 𝐷1 = 2 𝑎𝑥 − 4 𝑎𝑦 + 6.5 𝑎𝑧 nC/m2. In the

other region, 𝜀𝑟2 = 2.5. Find 𝐷2 and the angle θ2 that 𝐷2 makes with the
normal.

𝜃2 = −86.74°

𝐷2 = 5.96 𝑎𝑥 − 9.28 𝑎𝑦 + 16.25 𝑎𝑧
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Example – 8

• Region 𝑦 < 0 consists of a perfect conductor while region 𝑦 > 0 is a
dielectric medium ε1𝑟 = 2 as shown below. If there is a surface charge of

2 𝑛𝐶/𝑚2 on the conductor , determine 𝐸 and 𝐷 at:

(a) 𝐴(3,−2, 2) (b) 𝐵(−4, 1, 5)
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Example – 8 (contd.)

(a) Point 𝐴(3,−2, 2) is in the conductor since 𝑦 = −2 < 0 at A. Hence:

𝐸 = 0 = 𝐷

(b) Point 𝐵(−4, 1, 5) is in the dielectric medium since 𝑦 = 1 > 0 at B. Hence:

𝐷𝑛 = ρ𝑠 = 2 𝑛𝐶/𝑚2

Therefore:
ˆ2 yD a nC/m2

0 1r

D
E

 
 V/m ˆ113.1 yE a V/m
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Example – 9
• The plane 𝑧 = 4 is the interface between two dielectrics. The dielectric

region 𝑧 > 4 has dielectric constant of 5 and 𝐸 = 6 𝑎𝑥 − 12 𝑎𝑦 + 8 𝑎𝑧

(V/m). If the dielectric constant is 2 in region 𝑧 < 4, find the electric field
intensity in that region.

𝜀 = 5

𝜀 = 2

𝐸 = 6 𝑎𝑥 − 12 𝑎𝑦 + 8 𝑎𝑧

𝐸 =? ?

y

z

x

region 1

region 2

𝐸1𝑛 = 𝐸1𝑧 = 8 𝑎𝑧

𝐸1𝑡 = 6 𝑎𝑥 − 12 𝑎𝑦 = 𝐸2𝑡

1
2 1

2

n nE E





2

5
ˆ ˆ8 20

2
n z zE a a  

2 2 2n tE E E   2 ˆ ˆ ˆ6 12 20x y zE a a a   

z=4
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Until now: we used Coulomb’s law and Gauss’s law to determine 𝐸

when the charge distribution is known or 𝐸 = −∇V when the 
potential is known throughout the region. 

Now: we will consider practical electrostatics problems where only 
electrostatic conditions (charge and potential) at some boundaries 

are known and it is desired to find 𝐸 and V throughout the region. 
Such problems are usually solved using Poisson’s or Laplace’s 

equation or “Method of Images”
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Poisson’s and Laplace’s Equation

• From Gauss’s Law: . vE



 

E V • We have:
 . vV




   

2 2 2
2

2 2 2

vV V V
V

x y z





  
     

  
(Poisson’s Equation)

• If the medium under consideration contains no charge then: 2 0V 

Laplace’s Equations

These formulations are extremely useful for determining the electrostatic 
potential V in regions with boundaries on which V is known, such as the 

regions between the plates of a capacitor with specified voltage difference 
across it. 
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Poisson’s and Laplace’s Equation (contd.)

2 2
2

2 2

1 1

2

vV V V
V

z




     

    
      

    

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

vV V V
V r

r r r r r




     

       
        

       

• The corresponding Laplace’s equations are:

2 2 2
2

2 2 2
0

V V V
V

x y z

  
    

  

2 2
2

2 2

1 1
0

2

V V V
V

z


    

    
     

    

2
2 2

2 2 2 2 2

1 1 1
sin 0

sin sin

V V V
V r

r r r r r


    

       
       

       
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Uniqueness Theorem

• One can use any of the available methods (analytical, graphical, numerical,
experimental etc.) to solve Laplace‘s or Poisson’s equations.

• If the solution exits then that solution is unique irrespective of the
method used to determine them.

• This is known as Uniqueness Theorem.
• Proof of this theorem – through contradiction [follow your text book]

• Before we begin to solve Boundary-Value-Problems, we should bear in
mind the three things that uniquely describe a problem:

1. The appropriate differential equation (Laplace’s or Poisson’s equation)
2. The solution region
3. The prescribed boundary conditions
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Procedure for Solving Poisson’s or Laplace’s Equations
1. Solve Laplace’s (if ρ𝑣 = 0) or Poisson’s (if ρ𝑣 ≠ 0) equation using either

(a) direct integration when V is a function of one variable or (b)
separation of variables if V is a function of more than one variable. The
solution at this point is not unique but is expressed in terms of unknown
integration constants to be determined.

2. Apply the boundary conditions to determine the unique solution for V.
Imposing the given boundary conditions makes the solution unique.

3. Having obtained V, find 𝐸 using 𝐸 = −∇V, 𝐷 from 𝐷 = ε𝐸, and  𝐽 from
 𝐽 = σ𝐸.

4. If required, find the charge Q induced on a conductor using 𝑄 =  ρ𝑠 𝑑𝑆,

where ρ𝑠 = 𝐷𝑛 and 𝐷𝑛 is the component of 𝐷 normal to the conductor.
If necessary, the capacitance of two conductors can be found using 𝐶 =

𝑄/𝑉 or the resistance of an object can be found using 𝑅 =
𝑉

𝐼
, where 𝐼 =

  𝐽. 𝑑𝑆.
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Example – 10: Dielectric Filled Parallel Plates

Q: What electric potential field 𝑉(  𝑟), electric field 𝐸(  𝑟) and charge density
ρ𝑠(  𝑟) is produced by this situation?

• Consider two infinite, parallel conducting plates, spaced a distance d

apart. The region between the plates is filled with a dielectric ε. Say a
voltage V0 is placed across these plates.

z

z=0

z=-d
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Example – 10 (contd.)

A: We must solve a boundary value problem! We must find solutions that:

a) Satisfy the differential equations of electrostatics (e.g., Poisson’s,
Laplace’s, Gauss’s).

b) Satisfy the electrostatic boundary conditions.

Q: Yikes! Where do we even start ?

A: We might start with the electric potential field 𝑉(  𝑟), since it is a scalar
field.

a) The electric potential function must satisfy Poisson’s equation:

2 ( )
( ) v r

V r



  

b) It must also satisfy the boundary conditions:

𝑉 𝑧 = −𝑑 = 𝑉0 𝑉 𝑧 = 0 = 0
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• Consider first the dielectric region (−𝑑 < 𝑧 < 0). Since the region is a
dielectric, there is no free charge, and:

( ) 0v r 

• Therefore, Poisson’s equation reduces to Laplace’s equation:

2 ( ) 0V r 

• This problem is greatly simplified, as it is evident that the solution 𝑉(  𝑟) is
independent of coordinates x and y. In other words, the electric potential
field will be a function of coordinate z only:

( ) ( )V r V z

• This make the problem much easier! Laplace’s equation becomes:

2 ( ) 0V r  2 ( ) 0V z 
2

2

( )
0

V z

z






Example – 10 (contd.)
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• Integrating both sides of Laplace’s equation, we get:

 
2

2

( )
0

V z
dz dz

z

 
 

 
  1

( )V z
C

z






• And integrating again we find:

 1

( )V z
dz C dz

z

 
 

 
  1 2( )V z C z C 

• We find that the equation 𝑉 𝑧 = 𝐶1𝑧 + 𝐶2 will satisfy Laplace’s equation
(try it!). We must now apply the boundary conditions to determine the
value of constants C1 and C2.

1 2( 0) (0) 0V z C C   

Example – 10 (contd.)

1 2 0( )V z d C d C V     

• We know that the value of the electrostatic potential at every point on
the top plate (𝑧 = −𝑑) is 𝑉 −𝑑 = 𝑉0, while the electric potential on the
bottom plate (𝑧 = 0) is zero 𝑉 0 = 0 . Therefore:
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• Two equations and two unknowns (C1 and C2)!

• and therefore, the electric potential field within the dielectric is found to
be:

1 2( )V z C z C  0( )
V

V r z
d

 

• Before we proceed, let’s do a sanity check!
• In other words, let’s evaluate our answer at 𝑧 = 0 and 𝑧 = −𝑑, to make

sure our result is correct.

0
0( ) ( )

V
V z d d V

d
     

0( 0) (0) 0
V

V z
d

   

Example – 10 (contd.)

𝐶1 = −
𝑉0

𝑑
𝐶2 = 0

• Solving for C1 and C2 we get:
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• Now, we can find the electric field within the dielectric by taking the
gradient of our result:

( ) ( )E r V r  0 ˆ( ) z

V
E r a

d
 −𝑑 ≤ 𝑧 ≤ 0

• Finally, we need to determine the charge density that actually created
these fields!

Q: Charge density !?! I thought that we already determined that the charge
density ρ𝑣(  𝑟) is equal to zero?

A: We know that the free charge density within the dielectric is zero—but
there must be charge somewhere, otherwise there would be no fields!

• And thus we can easily determine the electric flux density by multiplying
by the dielectric constant of the material:

0 ˆ( ) ( ) z

V
D r E r a

d
   −𝑑 ≤ 𝑧 ≤ 0

Example – 10 (contd.)
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• Recall that we found that at a conductor/dielectric interface, the surface
charge density on the conductor is related to the electric flux density in
the dielectric as:

ˆ( ). ( )n n sD D r a r 

• First, we find that the electric flux density on the bottom surface of the top
conductor (i.e., at 𝑧 = −𝑑) is:

0 0ˆ ˆ( ) | |z d z z d z

V V
D r a a

d d
  

 
  
 

• For every point on bottom surface of the top conductor, we find that the
unit vector normal to the conductor is:

 𝑎𝑛 =  𝑎𝑧

Example – 10 (contd.)



Indraprastha Institute of 

Information Technology Delhi ECE230

• Therefore, we find that the surface charge density on the bottom surface
of the top conductor is:

0ˆ ˆ ˆ( ) ( ). | .s n z d z z

V
r D r a a a

d
    0( )s

V
r

d
   (𝑧 = −𝑑)

• Therefore, evaluating the electric flux density on the top surface of the
bottom conductor (i.e., 𝑧 = 0), we find:

0
0

ˆ ˆ ˆ( ) ( ). | .( )s n z z z

V
r D r a a a

d
     0( )s

V
r

d


 


  (𝑧 = 0)

• Likewise, we find the unit vector normal to the top surface of the bottom
conductor is (do you see why):

 𝑎𝑛 = − 𝑎𝑧

Example – 10 (contd.)
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• We should note several things about these solutions:

( ) 0E r 1)

. ( ) 0D r  2 ( ) 0V r 2) and

3) 𝐷(  𝑟) and 𝐸(  𝑟) are normal to the surface of the conductor (i.e., their
tangential components equal zero!

4) The electric field is precisely the same as calculated earlier. i.e.,

0( ) ( )
ˆ ˆ ˆ( )

2 2

s s
z z z

r r V
E r a a a

d

 

 
    (−𝑑 < 𝑧 < 0)

Example – 10 (contd.)
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• In other words, the fields 𝐸(  𝑟), 𝐷(  𝑟), and 𝑉(  𝑟) are attributable to charge
densities 𝜌𝑠+(  𝑟) and 𝜌𝑠−(  𝑟).

z

z=0

z=-d

Example – 10 (contd.)
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• Consider now a problem similar to the previous example (i.e., dielectric
filled parallel plates), with the exception that the space between the
infinite, conducting parallel plates is filled with free charge, with a density:

0( )v r z   (−𝑑 < 𝑧 < 0)

z

z=0

z=-d

Example – 11


