

<u>Lecture – 12</u>

Date: 11.02.2016

• Electric Field Due to Line Charge (contd.)

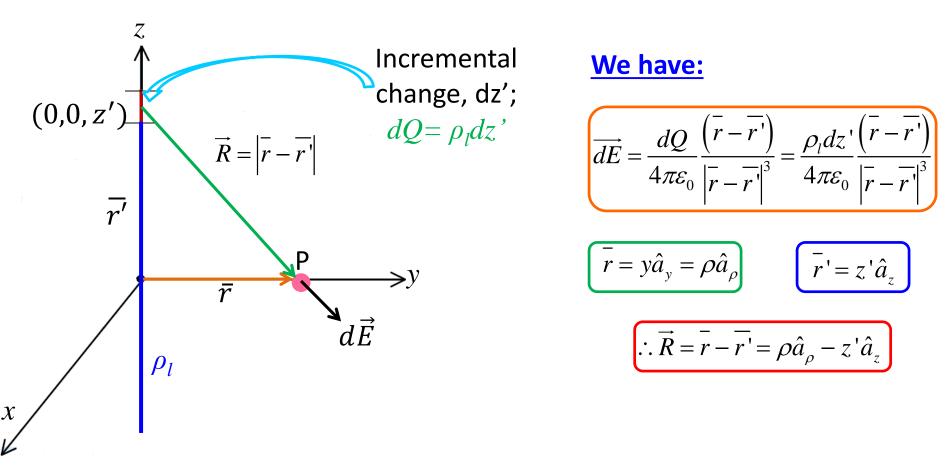
Electric Field due to a Line Charge

- Filament like distribution of charge density.
- For example, sharp beam in a cathode-ray tube or charged conductor of a very small radius.
- Let us assume an infinite straight-line charge, with charge density ρ_l C/m, lying along the z-axis.

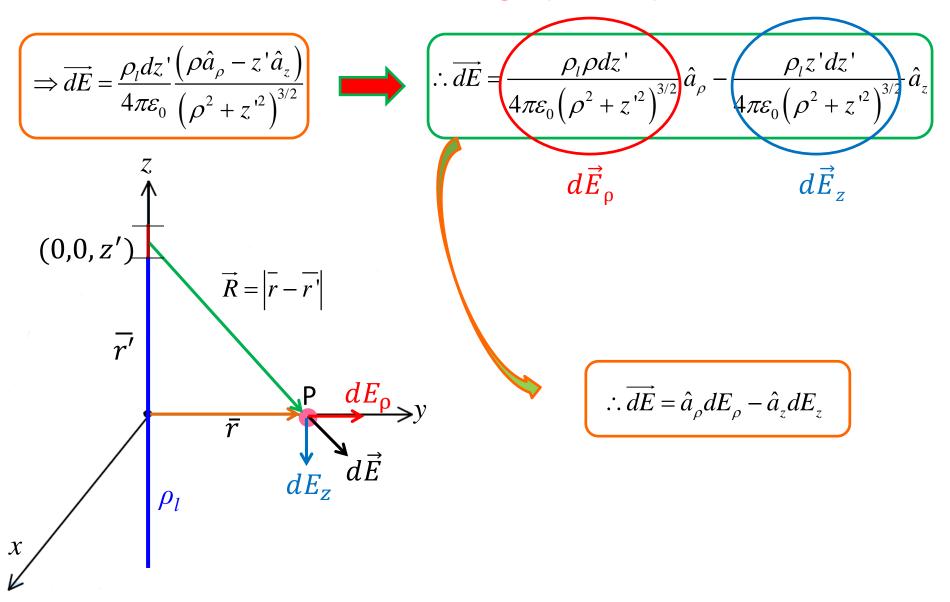
Q: What electric field $\vec{E}(\vec{r})$ is produced by this line charge? **A:** Apply Coulomb's Law.

Electric Field due to a Line Charge (contd.)

• For the calculation of electric field \vec{E} at P(0, y, 0), the first step is to determine the incremental field at P due to the incremental charge $dQ = \rho_l dz'$

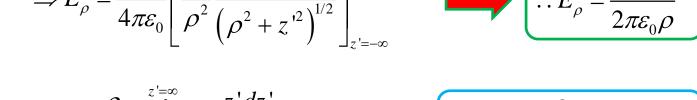


Electric Field due to a Line Charge (contd.)



Electric Field due to a Line Charge (contd.)

Now:



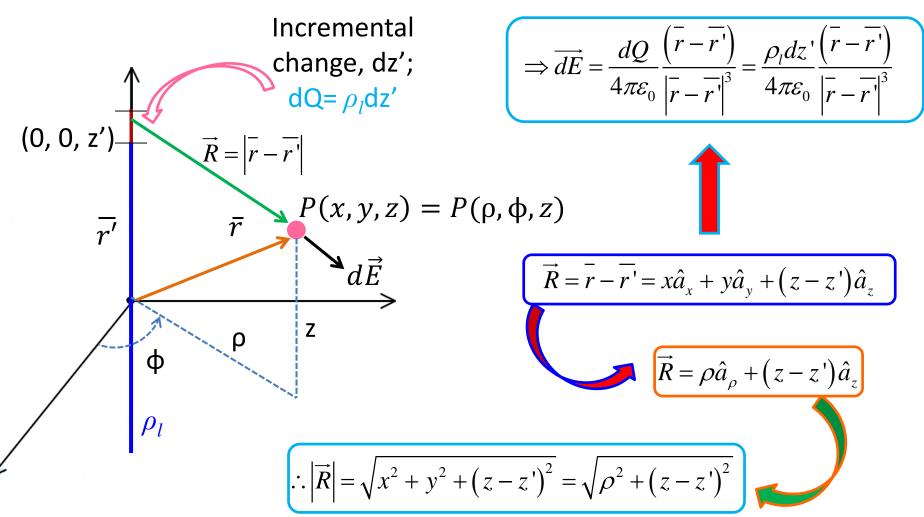
Therefore:

$$\vec{E}(\vec{r}) = E_{\rho}\hat{a}_{\rho} - E_{z}\hat{a}_{z} = \frac{\rho_{l}}{2\pi\varepsilon_{0}\rho}\hat{a}_{\rho}$$

BTW, there are multiple ways of solving this problem. You can master this art through practice!

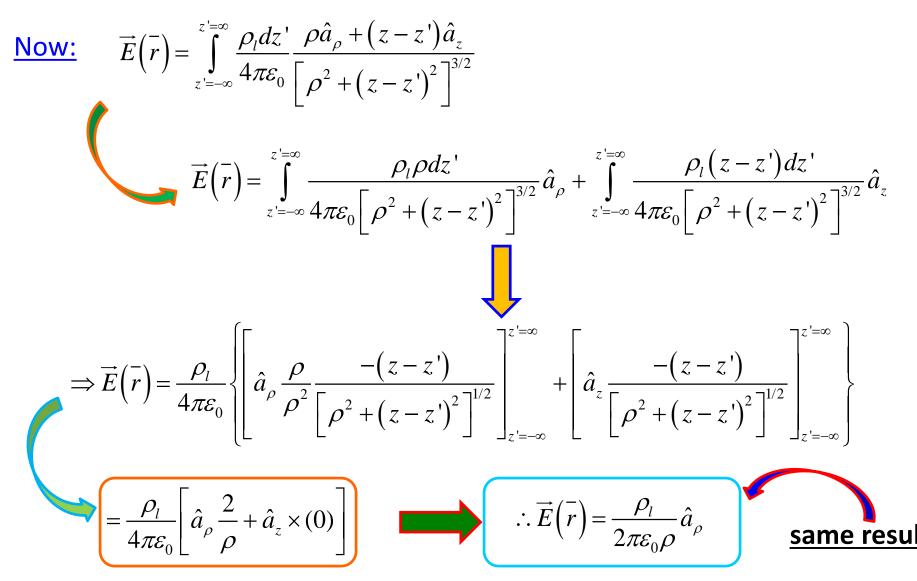
Example – 1

• Determine electric field \vec{E} at P(x, y, z)

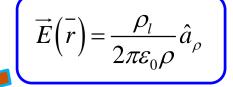


ECE230

Example – 1 (contd.)



ECE230



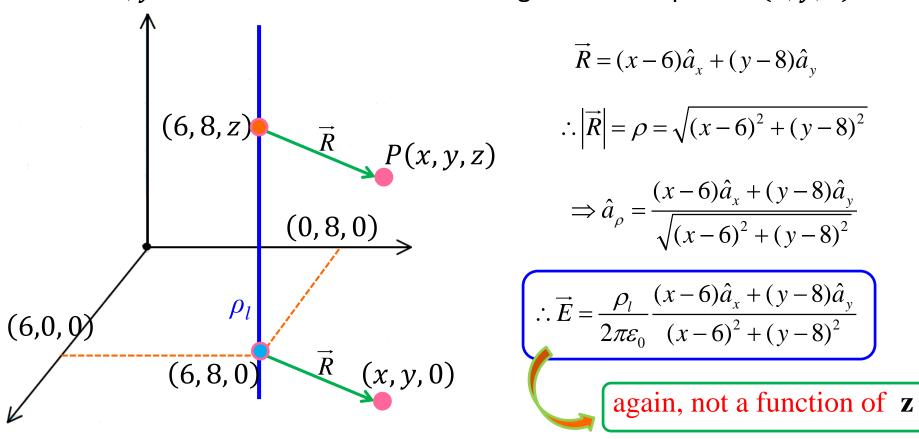
Recall unit vector \hat{a}_{ρ} is the direction that **points away from** the z-axis.

Thus, the electric field produced by the uniform line charge points away from the line charge, just like the electric field produced by a point charge points away from the charge.

- Note the magnitude of the electric field is proportional to 1/ρ, therefore the electric field diminishes as we get further from the line charge.
- Note however, the electric field does not diminish as quickly as that generated by a point charge. Recall in the case of point charge, the magnitude of the electric field diminishes as 1/r².

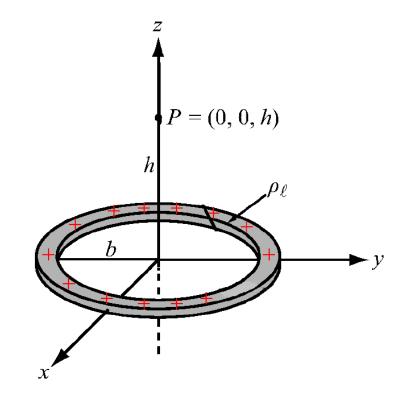
Example – 2

- Oh yes! It is important to note that not all the line charges will be located along the *z*-axis.
- For example, let us consider an infinite line charge parallel to the z-axis at x = 6, y = 8. We wish to find \vec{E} at the general field point P(x, y, z).



Example – 3

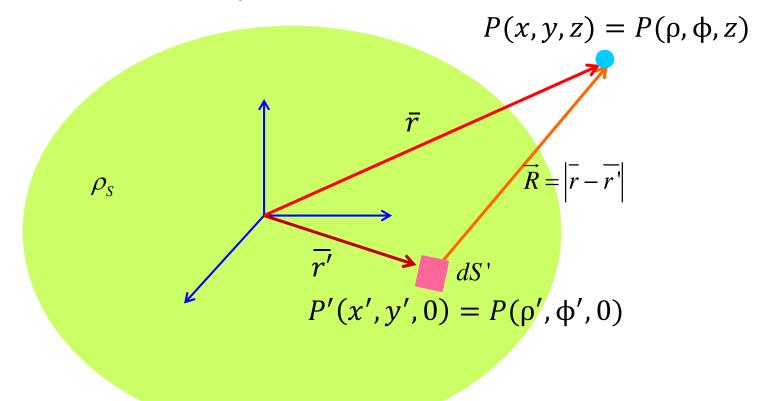
- A ring of charge of radius b is characterized by a uniform line charge density of positive polarity ρ_l . The ring, with its center at (0,0,0), resides in free medium and is positioned in the xy-plane.
 - i. Determine \vec{E} at point P = (0, 0, h) along the axis of the ring at a distance h from the center.
 - ii. What values of h gives the maximum value of \vec{E} .
 - iii. If the total charge on the ring is Q, find \vec{E} as $b \rightarrow 0$.



ECE230

Electric Field due to a Surface Charge

• Consider a **disk of radius a**, centered at the origin, and lying entirely on the xy-plane (i.e., z = 0 plane). Let us also assume that this disk carries a uniform charge density of $\rho_s C/m^2$.



Challenge: determine electric field at point P

• From Coulomb's Law:

$$\vec{E}(\vec{r}) = \iint_{S} \frac{\rho_{S}(r')}{4\pi\varepsilon_{0}} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^{3}} dS'$$
$$dS' = \rho' d\rho' d\phi' \qquad 0 < \rho' < a \qquad 0 < \phi' < 2\pi$$
$$\vec{r} = x\hat{a}_{x} + y\hat{a}_{y} + z\hat{a}_{z}$$
$$\vec{r}' = x'\hat{a}_{x} + y'\hat{a}_{y}$$
$$\therefore \vec{R} = \vec{r} - \vec{r'} = (x - x')\hat{a}_{x} + (y - y')\hat{a}_{y} + z\hat{a}_{z}$$
Convert to cylindrical
$$\therefore \vec{R} = \vec{r} - \vec{r'} = (x - \rho'\cos\phi')\hat{a}_{x} + (y - \rho'\sin\phi')\hat{a}_{y} + z\hat{a}_{z}$$

$$\left|\vec{R}\right|^{3} = \left|\vec{r} - \vec{r'}\right|^{3} = \left[\left(x - \rho'\cos\phi'\right)^{2} + \left(y - \rho'\sin\phi'\right)^{2} + z^{2}\right]^{3/2}$$

ECE230

$$\vec{E}(\vec{r}) = \iint_{S} \frac{\rho_{s}(r')}{4\pi\varepsilon_{0}} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^{3}} dS'$$

$$= \frac{\rho_{s}}{4\pi\varepsilon_{0}} \int_{\phi=0}^{2\pi} \int_{\rho=0}^{a} \frac{(x - \rho'\cos\phi')\hat{a}_{x} + (y - \rho'\sin\phi')\hat{a}_{y} + z\hat{a}_{z}}{\left[(x - \rho'\cos\phi')^{2} + (y - \rho'\sin\phi')^{2} + z^{2}\right]^{3/2}} \rho'd\rho'd\phi'$$

$$\text{Yikes! What a mess!}$$

• To **simplify** our integration let's determine the electric field $\vec{E}(\vec{r})$ along the **z-axis** only. In other words, set x = 0 and y = 0.

$$\Rightarrow \vec{E}(x=0, y=0, z) = \frac{\rho_s}{4\pi\varepsilon_0} \int_{\phi=0}^{2\pi} \int_{\rho=0}^{a} \frac{(0-\rho'\cos\phi')\hat{a}_x + (0-\rho'\sin\phi')\hat{a}_y + z\hat{a}_z}{\left[\left(0-\rho'\cos\phi'\right)^2 + \left(0-\rho'\sin\phi'\right)^2 + z^2\right]^{3/2}} \rho'd\rho'd\phi'$$

ECE230

Electric Field due to a Surface Charge (contd.)

ECE230

Electric Field due to a Surface Charge (contd.)

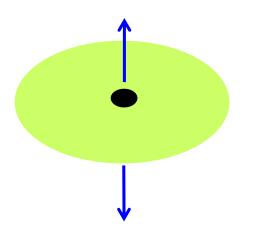
$$\vec{E}(x=0, y=0, z) = \frac{\rho_{s}}{4\pi\varepsilon_{0}} \left[\int_{\phi=0}^{2\pi} \int_{\rho=0}^{a} \frac{z\hat{a}_{z}}{\left[\rho'^{2}+z^{2}\right]^{3/2}} \rho' d\rho' d\phi' \right]$$

$$\vec{E}(x=0, y=0, z) = -\frac{\rho_{s}}{2\varepsilon_{0}}\hat{a}_{z} \left[1 - \frac{z}{\sqrt{z^{2}+a^{2}}} \right] \qquad \text{if } z > 0$$

$$-\frac{\rho_{s}}{2\varepsilon_{0}}\hat{a}_{z} \left[1 + \frac{z}{\sqrt{z^{2}+a^{2}}} \right] \qquad \text{if } z < 0$$

From this expression, we can conclude **two** things. The first is that **above** the disk (z > 0), the electric field points in the direction \hat{a}_z , and below the disk (z < 0), it points in the direction $-\hat{a}_z$.

• What a surprise (not)! The electric field **points away** from the charge. It appears to be **diverging** from the charged disk

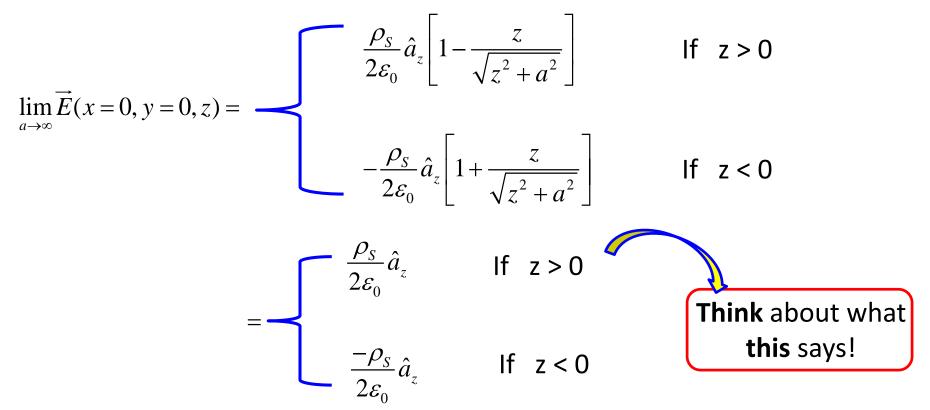


 Likewise, it is evident that as we move further and further from the disk, the electric field will diminish. In fact, as distance z goes to infinity, the magnitude of the electric field approaches zero. This of course is similar to the point or line charge; as we move an infinite distance away, the electric field diminishes to nothing.

Say that we have a very large charge disk. So large, in fact, that its radius a approaches infinity !

Q: What electric field is created by this infinite plane?

A: We **already** know! Just evaluate the charge disk solution for the case where the disk **radius** *a* is **infinity**.



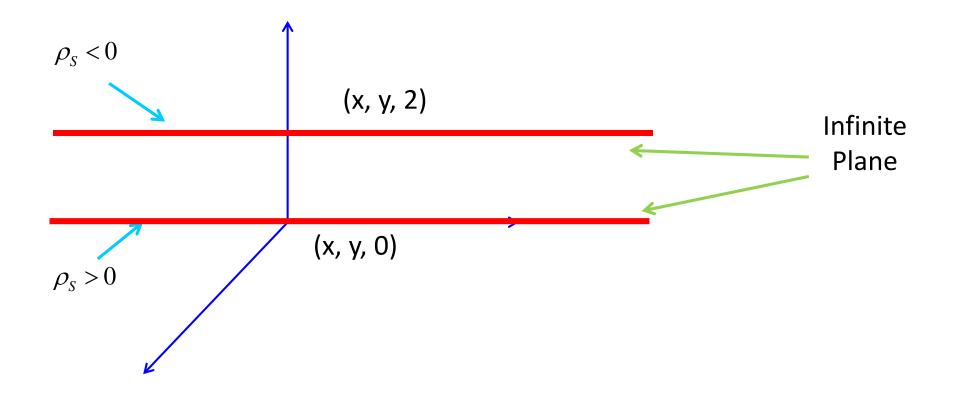
- First, we note that the electric field **points away** from the plane if ρ_s is positive, and toward the plane if ρ_s is negative.
- Second, we notice that the magnitude of the electric field is a constant the magnitude is independent of the distance from the infinite plane!

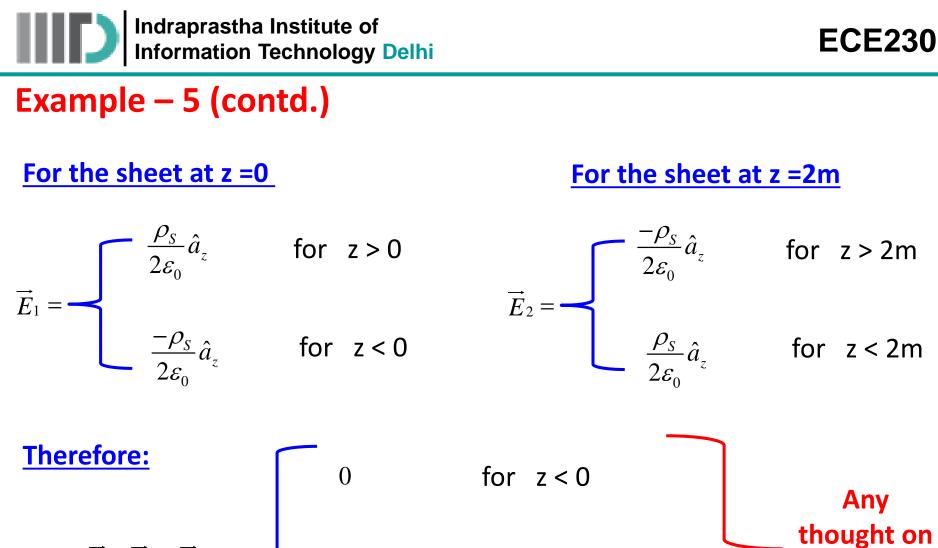
$$\rho_{s} > 0$$

Example – 5

• An infinite sheet with uniform surface charge density ρ_s is located at z=0 (x-y plane), and another infinite sheet with $-\rho_s$ is located at z=2m, both in free space. Determine \vec{E} everywhere.

ECE230





$$\vec{E} = \vec{E}_1 + \vec{E}_2 = - \frac{\rho_s}{\varepsilon_0} \hat{a}_z \qquad \text{for } 0 < z < 2m$$

$$0 \qquad \text{for } z > 2m$$

this

outcome !

Electric Field of a Charged Sphere

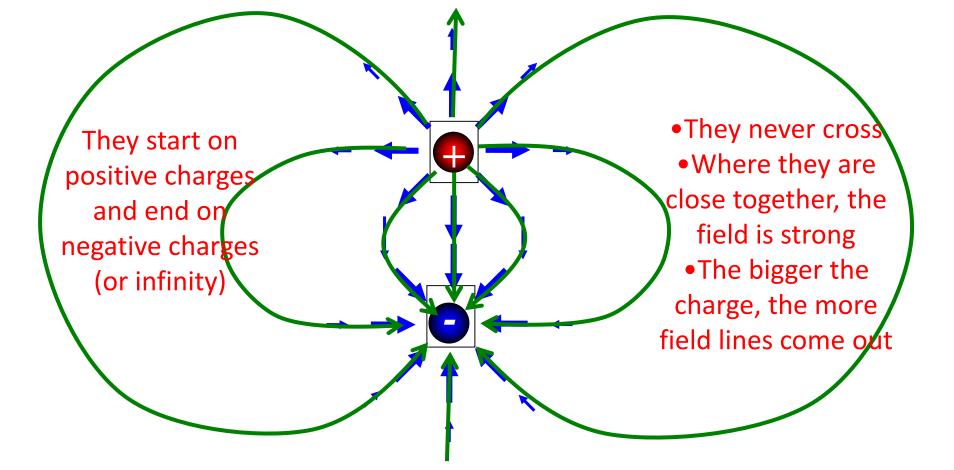
Involves tricky triple integration. Lets first learn Gauss Theorem. It will simplify this problem.

Electric Field Lines

- Electric *field lines* are a pictorial representation of the electric field. These consist of directed lines indicating the direction of electric field at various points in space.
- There is no rule as to how many lines are to be shown. However, it is customary to draw number of lines proportional to the charge. Thus if N number of lines are drawn from or into a charge Q, 2N number of lines would be drawn for charge 2Q.
- Lines are dense close to a source of the electric field and become sparse as one moves away.
- Lines originate from a positive charge and end either on a negative charge or move to infinity.
- Lines of force due to a solitary negative charge is assumed to start at infinity and end at the negative charge.
- Field lines do not cross each other. (if they did, the field at the point of crossing will not be uniquely defined.)

ECE230

Electric Field Lines (contd.)



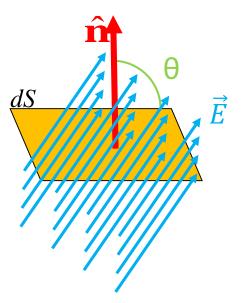
Electric Field Lines (contd.)

Note:

- **Near field:** very close to a charge, the field due to that charge predominates. Therefore, the lines are radial and spherically symmetric.
- Far field: far from the system of charges, the pattern should look like that of a single point charge of value $Q = \sum_i Q_i$. Thus, the lines should be radially inward or outward, unless Q = 0.
- The direction of the electric field vector \vec{E} at a point is always tangent to the field lines.

Electric Flux

 Simply speaking, electric flux is the amount of electric field going through a surface. It is defined in terms of a direction, unit vector, perpendicular to the surface.



ECE230

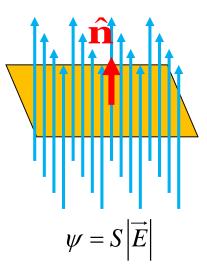
$$\psi = \int_{S} d\psi = \int_{S} \vec{E} \cdot \hat{n} dS$$

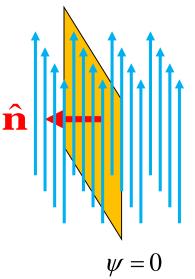
 $\psi = E(S\cos\theta)$

• If the electric field is uniform, the angle θ is constant and we have:

Electric Flux (contd.)

When the surface is flat, and the fields are constant, you can just use multiplication to get the flux.





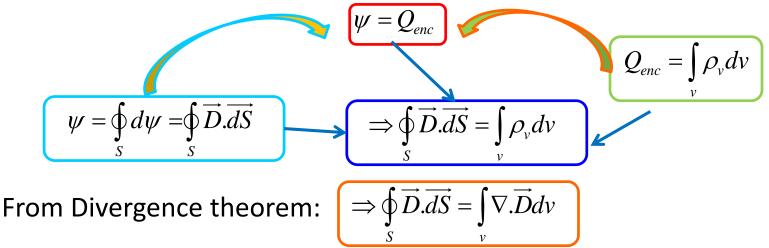
• When the surface is curved, or the fields are not constant, you have to perform an integration:

$$\boldsymbol{\psi} = \int \vec{E} \cdot \hat{\mathbf{n}} dS$$

Gauss Law

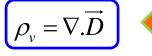
- In practice, electric field intensity is dependent on the medium in which the charge is placed (free space in our discussion).
- Let us define a new vector \vec{D} that relates the medium and the electric field as:

• According to Gauss [full name: Carl Friedrich Gauss], the total electric flux ψ through any closed surface is equal to the total charge enclosed by that surface.



Gauss Law (contd.)

• Therefore:



First of the four Maxwell's

equations

Gauss's Law can be used to solve three types of problems:

- 1. Finding the total charge in a region when you know the electric field outside that region
- 2. Finding the total flux out of a region when the charge is known
 - It can also be used to find the flux out of one side in symmetrical problems ↔ In such cases, you must first argue from symmetry that the flux is identical through each side
- 3. Finding the electrical field in highly symmetrical situations
 - One must first use reason to find the direction of the electric field everywhere
 - Then draw a Gaussian surface over which the electric field is constant
 - Use this surface to find the electric field using Gauss's Law
 - Works generally only for spherical, cylindrical, or planar-type problems

Gauss Law (contd.)

- 1. A continuous charge distribution has rectangular symmetry if it depends only on x (or y or z), cylindrical symmetry if it depends only on ρ , and spherical symmetry if it depends only on r (independent of θ and φ).
- 2. Gauss's Law is also valid for asymmetric charge distribution. However, you can't apply Gauss's Law to determine \vec{E} or \vec{D} . In such situations, apply Coulomb's Law.
- 3. Gaussian surface is chosen such that \vec{D} is normal or tangential to the surface. When \vec{D} is normal to the surface then $\vec{D} \cdot \vec{ds} = \vec{D}$ and for tangential \vec{D} we get $\vec{D} \cdot \vec{ds} = 0$.

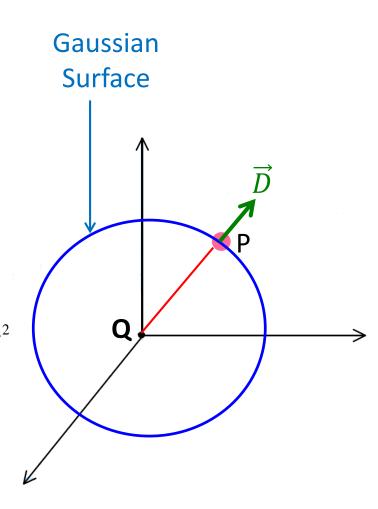
Applications of Gauss's Law

Point Charge

- Suppose a point charge is located at origin.
- Determine \vec{D} at a point P.
- Choose a spherical surface containing P.
- \vec{D} is everywhere normal to the Gaussian surface.

$$Q = \oint_{S} \overrightarrow{D}.\overrightarrow{dS} = \oint_{S} DdS \cos 0^{\circ} = \oint_{S} DdS = D \oint_{S} dS = D \times 4\pi r$$

$$\therefore D = \frac{Q}{4\pi r^2}$$



ECE230

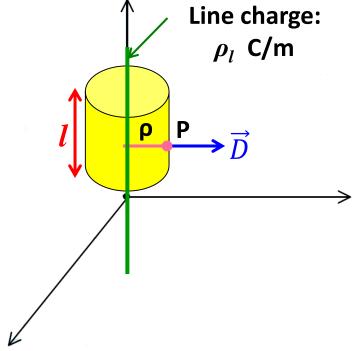
Applications of Gauss's Law (contd.)

Infinite Line Charge

- To determine \overrightarrow{D} at a point P, lets choose a cylindrical surface of arbitrary length l.
- \vec{D} is normal to side surface, doesn't exist on the top and bottom surface (because there is no z-component of \vec{D}).
- <u>Therefore:</u>

$$Q = \rho_l l = \oint_S \overrightarrow{D}.\overrightarrow{dS} = D_\rho \oint_S dS = D_\rho \times 2\pi\rho l$$
$$D_\rho = \frac{\rho_l}{2\pi\rho}$$

$$\therefore D = \frac{\rho_l}{2\pi\rho} \hat{a}_{\rho}$$



ECE230

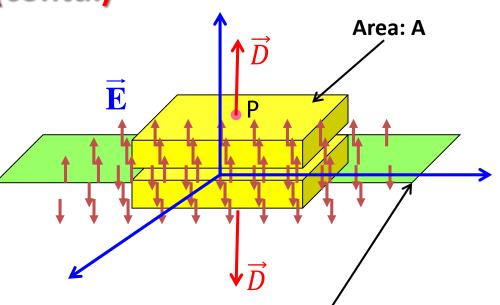
Applications of Gauss's Law (contd.)

Infinite Sheet Charge

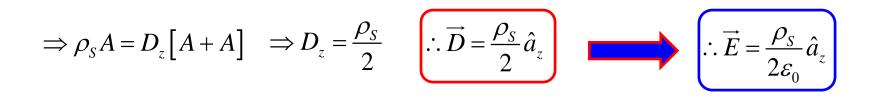
- To determine \overrightarrow{D} at a point P, lets choose a rectangular box with top and bottom area A
- \overrightarrow{D} is normal to the top and bottom, doesn't exist on the side surface

• <u>Therefore:</u>

$$Q = \rho_S \int dS = \oint_S \overrightarrow{D}.\overrightarrow{dS} = D_z \left[\int_{top} dS + \int_{bottom} dS \right]$$



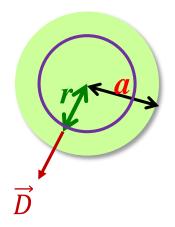
Infinite sheet of charge: $\rho_s C/m^2$

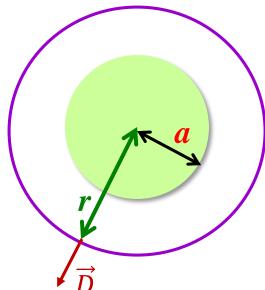


Applications of Gauss's Law (contd.)

Uniformly Charged Sphere

- A sphere of radius *a* has uniform charge density ρ_v throughout. What is the direction and magnitude of the electric field everywhere?
 - To determine \overrightarrow{D} everywhere, let us construct Gaussian surfaces for cases $\mathbf{r} \leq \mathbf{a}$ and $\mathbf{r} \geq \mathbf{a}$ separately.





- Clearly, all directions are created equal in this problem
- Certainly the electric field will point away from the sphere at all points
- The electric field must depend only on the distance

Applications of Gauss's Law (contd.)

Uniformly Charged Sphere

Case-I: r < a

• When computing the flux for a Gaussian surface, only include the electric charges *inside* the surface. Here, the enclosed charge is:

$$Q_{enc} = \int_{v} \rho_{v} dv = \rho_{v} \int_{v} dv = \rho_{v} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{r} r^{2} \sin \theta dr d\theta d\phi \qquad (\therefore Q_{enc} = \rho_{v} \frac{4}{3} \pi r^{3})$$

• The total flux:

$$\psi = \oint_{S} \overrightarrow{D}.\overrightarrow{dS} = D_r \oint_{S} dS = D_r \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin\theta d\theta d\phi \quad (:\psi = D_r 4\pi r^2)$$

• From Gauss's Law: $\psi = Q_{enc} \qquad \Rightarrow D_r 4\pi r^2 = \rho_v \frac{4}{3}\pi r^3 \qquad \Rightarrow D_r = \frac{\rho_v}{3}r$

$$\overrightarrow{D} = \frac{r}{3} \rho_v \hat{a}_r$$

ECE230

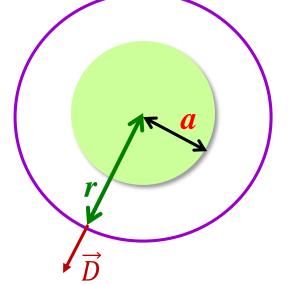
Applications of Gauss's Law (contd.)

Uniformly Charged Sphere

Case-II: $r \ge a$

The charge enclosed in this case is the entire charge:

$$Q_{enc} = \int_{v} \rho_{v} dv = \rho_{v} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{a} r^{2} \sin\theta dr d\theta d\phi \qquad \therefore Q_{enc} = \rho_{v} \frac{4}{3} \pi a^{3}$$



• While:

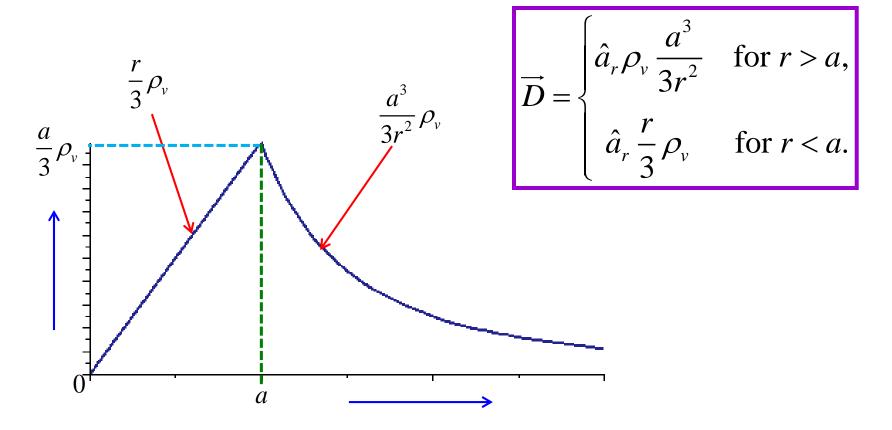
$$\psi = \oint_{S} \overrightarrow{D}.\overrightarrow{dS} = D_{r} \oint_{S} dS = D_{r} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^{2} \sin \theta d\theta d\phi \qquad (\therefore \psi = D_{r} 4\pi r^{2})$$

• From Gauss's Law: $\Psi = Q_{enc} \implies D_r 4\pi$

$$\Rightarrow D_r 4\pi r^2 = \rho_v \frac{4}{3}\pi a^3 \quad \Rightarrow D_r = \frac{a^3}{3r^2}\rho_v$$
$$\therefore \vec{D} = \frac{a^3}{3r^2}\rho_v \hat{a}_r$$

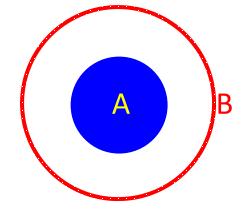
Applications of Gauss's Law (contd.)

Uniformly Charged Sphere



Example – 6

A blue sphere A is contained within a red spherical shell B. There is a charge Q_A on the blue sphere and charge Q_B on the red spherical shell.



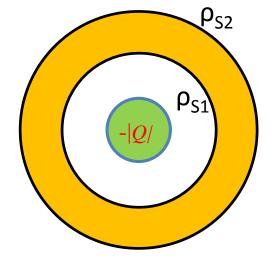
ECE230

• The electric field in the region between the spheres is completely independent of Q_B the charge on the red spherical shell.

Example – 7

Consider the following topology:

A) A solid non-conducting sphere carries a total charge Q = -3 mC distributed evenly throughout. It is surrounded by an *uncharged* conducting spherical shell.



ECE230

- What is the surface charge density ρ_{S1} on the inner surface of the conducting shell?

(c) $\rho_{S1} < 0$ (c) $\rho_{S1} = 0$ (c) $\rho_{S1} > 0$

ECE230

Example – 7 (contd.)

- Inside the conductor, we know the field $\vec{E} = 0$
- Select a Gaussian surface inside the conductor
 - Since $\vec{E} = 0$ on this surface, the total enclosed charge must be 0.
 - Therefore, the surface charge density on the inner surface of the conducting shell must be positive, to cancel the charge -|Q|.

