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• Conservative and Solenoidal Vector Fields
• Charge, Charge Density, Total Charge 
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The Conservative Vector Field

• A conservative field has the interesting property
that its line integral is dependent on the beginning
and ending points of the contour only! In other
words, for the two contours:
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• Of all possible vector fields  𝐴  𝑟 , there is a subset of
vector fields called conservative fields. A conservative
vector field is a vector field that can be expressed as the
gradient of some scalar field g  𝑟 :

 𝐶  𝑟 = Δg  𝑟

In other words, the gradient of any scalar field always results in a 
conservative field!

• We therefore say that the line integral of a conservative field is path
independent.
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• This path independence is evident
when considering the integral identity:
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• For one dimension, the above identity
simply reduces to the familiar expression:
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The Conservative Vector Field (contd.)

position vector  𝑟𝐵 denotes the ending point (PB) of contour C, and  𝑟𝐴
denotes the beginning point (PA). 𝑔  𝑟 =  𝑟𝐵 denotes the value of scalar
field 𝑔  𝑟 evaluated at the point denoted by  𝑟𝐵, and 𝑔  𝑟 =  𝑟𝐴 denotes
the value of scalar field 𝑔  𝑟 evaluated at the point denoted by  𝑟𝐴.

• Since every conservative field can be written in terms of the gradient of a
scalar field, we can use this identity to conclude:

( ). ( ).
C C

C r dl g r dl      ( ). B A

C

C r dl g r r g r r    

Consider then what happens then if we integrate over a closed contour.
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Q: What the heck is a closed contour ??

• Integration over a closed
contour is denoted as:

( ).
C

A r dl

The Conservative Vector Field (contd.)

PA
PB

Closed
Contour C

A: A closed contour’s beginning and
ending is the same point! e.g.,

A contour that is not closed 
is referred to as an open 

contour.

• The integration of a conservative field over a closed contour is therefore:

( ). ( ).
C C

C r dl g r dl      B Ag r r g r r    0

This result is due to the fact that  𝑟𝐴 =  𝑟𝐵    B Ag r r g r r  
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• Let’s summarize what we know about a conservative vector field:

1. A conservative vector field can always be expressed as the gradient of a
scalar field.

2. The gradient of any scalar field is therefore a conservative vector field.
3. Integration over an open contour is dependent only on the value of

scalar field 𝑔  𝑟 at the beginning and ending points of the contour (i.e.,
integration is path independent).

4. Integration of a conservative vector field over any closed contour is
always equal to zero.

The Conservative Vector Field (contd.)
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Example – 1   

• Consider the conservative vector field:  2 2( )A r x y z 

• Evaluate the contour integral: ( ).
C

A r dl

and contour C is:
PA

PB

C

where  2 2( )A r x y z 

• The beginning of contour C is the point denoted as: ˆ ˆ ˆ3 4A x y zr a a a  

• while the end point is denoted with position vector: ˆ ˆ3 2B x zr a a  

Note that ordinarily, this would be an impossible 
problem for us to do!
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• we note that vector field  𝐴  𝑟 is conservative, therefore:

( ). ( ).
C C

A r dl g r dl      B Ag r r g r r   

• For this problem, it is evident that:  2 2( )g r x y z 

• Therefore, 𝑔  𝑟 =  𝑟𝐴 is the scalar field evaluated at 𝑥 = 3, 𝑦 = −1, 𝑧 = 4;
while 𝑔  𝑟 =  𝑟𝐵 is the scalar field evaluated at at 𝑥 = −3, 𝑦 = 0, 𝑧 = −2.

   2 2(3) ( 1) 4 40Ag r r         2 2( 3) (0) 2 18Bg r r      

Example – 1 (contd.)

Therefore:

( ). ( ).
C C

A r dl g r dl   18 40 58    
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The Curl of Conservative Fields

• Recall that every conservative field can be written as the
gradient of some scalar field:

( ) ( )C r g r

• Consider now the curl of a conservative field: ( ) ( )C r g r 

• Recall that if  𝐶(  𝑟) is expressed using the Cartesian coordinate system, the

curl of  𝐶(  𝑟) is:
ˆ ˆ ˆ( )

y yz x z x
x y z

C CC C C C
C r a a a

y z z x x y

        
                   

• Likewise, the gradient of 𝑔(  𝑟) is: ˆ ˆ ˆ( )
y yz x z x

x y z

C CC C C C
C r a a a

y z z x x y

        
                   

• Combining the two results:
2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) x y z

g r g r g r g r g r g r
g r C r a a a
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          
            

                

Therefore: ( )
( )x

g r
C r

x






( )
( )y

g r
C r

y






( )
( )z

g r
C r

z








Indraprastha Institute of 

Information Technology Delhi ECE230

The Curl of Conservative Fields (contd.)

• We know:

2 2( ) ( )g r g r

y z z y

 


   

• each component of ∇ × ∇𝑔(  𝑟) is then equal to
zero, and we can say:

( ) ( ) 0g r C r  

The curl of every conservative field is equal to zero !

Q: Are there some non-conservative fields whose curl is also equal to zero?
A: NO! The curl of a conservative field, and only a conservative field, is equal 
to zero.

• Thus, we have way to test whether some vector field  𝐴  𝑟 is conservative:
evaluate its curl!

1. If the result equals zero—the vector field is conservative.
2. If the result is non-zero—the vector field is not conservative.
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• Let’s again recap what we’ve learnt about conservative fields:

The Curl of Conservative Fields (contd.)

1. The line integral of a conservative field is path independent.
2. Every conservative field can be expressed as the gradient of some

scalar field.
3. The gradient of any and all scalar fields is a conservative field.
4. The line integral of a conservative field around any closed contour is

equal to zero.
5. The curl of every conservative field is equal to zero.
6. The curl of a vector field is zero only if it is conservative.
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The Solenoidal Vector Field

1. We know that a conservative vector field  𝐶(  𝑟) can be
identified from its curl, which is always equal to zero:

( ) 0C r 

• Similarly, there is another type of vector field  𝑆(  𝑟), called a
solenoidal field, whose divergence always equals zero:

. ( ) 0S r 

Moreover, it should be noted that only solenoidal vector 
have zero divergence! Thus, zero divergence is a test for 

determining if a given vector field is solenoidal.

We sometimes refer to a solenoidal field 
as a divergenceless field.



Indraprastha Institute of 

Information Technology Delhi ECE230

2. Recall that another characteristic of a conservative vector field is that it

can be expressed as the gradient of some scalar field (i.e.,  𝐶(  𝑟)=∇𝑔(  𝑟) ).

The Solenoidal Vector Field (contd.)

• Solenoidal vector fields have a similar characteristic!
Every solenoidal vector field can be expressed as the curl

of some other vector field (say  𝐴(  𝑟)).

( ) ( )S r A r

• Additionally, it is important to note that only solenoidal vector fields can
be expressed as the curl of some other vector field.

The curl of any vector field always results in a solenoidal field!

• Note if we combine these two previous equations, we get a vector
identity:

. ( ) 0A r 
a result that is always true for any 

and every vector field  𝐴(  𝑟).
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The Solenoidal Vector Field (contd.)

3. Now, let’s recall the divergence theorem: . ( ) ( ).
v S

A r dv A r ds  

• If the vector field  𝐴(  𝑟) is solenoidal, we 
can write this theorem as: 

. ( ) ( ).
v S

S r dv S r ds  

But the divergence of a solenoidal field is zero: . ( ) 0S r 

As a result, the left side of the divergence
theorem is zero, and we can conclude that:

( ). 0
S

S r ds 

In other words the surface integral of any and every solenoidal
vector field across a closed surface is equal to zero.

• Note this result is analogous to evaluating a line
integral of a conservative field over a closed contour:

( ). 0
C

C r dl 



Indraprastha Institute of 

Information Technology Delhi ECE230

• Lets summarize what we know about solenoidal vector fields:

The Solenoidal Vector Field (contd.)

1. Every solenoidal field can be expressed as the curl of some other vector
field.

2. The curl of any and all vector fields always results in a solenoidal vector
field.

3. The surface integral of a solenoidal field across any closed surface is
equal to zero.

4. The divergence of every solenoidal vector field is equal to zero.
5. The divergence of a vector field is zero only if it is solenoidal.
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Maxwell’s Equations 

. vD  
B

E
t


  


. 0B 

D
H J

t


  



• Under the static conditions the Maxwell’s equations become:

. vD   0E  . 0B  H J 

Electric and Magnetic fields become decoupled under 
static conditions

Enables us to study electricity and magnetism as distinct separate 
phenomena

We refer the study of electric and magnetic phenomena 
under static conditions as electrostatics and magnetostatics
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The experience gained through studying electrostatics and 
magnetostatics phenomena will prove invaluable in tackling the more 

involved concepts which deal with time-varying fields 

Maxwell’s Equations (contd.) 

• Oh yes! We do not study electrostatics just as a prelude to the study of
time-varying fields.

• Electrostatics is an important concept in its own right.
• Many electronics devices and systems are based on the principles of

electrostatics.
• Examples include: x-ray machines, oscilloscopes, ink-jet electrostatic

printers, liquid crystal displays, copy machines, micro-electro-mechanical
switches (MEMS), accelerometers, and solid-state-based control devices
etc.

• Electrostatic principles also guide the design of medical diagnostic sensors,
such as the electrocardiogram, which records the heart’s pumping pattern,
and electroencephalogram, which records brain activity.
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Q: I see !  Electrostatics is important as a 
distinct phenomena but not Magnetostatics. 
Right?  

A: that is not correct! Magnetostatics is equally important and this 
concept is utilized in design of systems such as Loudspeakers, Door Bells, 

Magnetic Relays, Maglev Trains etc. 
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Electric Charge

• Most of classical physics can be described in terms of three fundamental
units, which define our physical “reality”.

Mass (e.g., Kg) Distance (e.g., meters) Time (e.g., seconds) 

• From these fundamental units, we can define other important physical
parameters such as Energy, Work, Pressure etc.

• However, these three fundamental units alone are insufficient for
describing all of classical physics—we require one more to completely
describe physical reality!

• This fourth fundamental unit is Coulomb, the unit of electric charge.

All electromagnetic phenomena can be attributed to electric charge!
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• It should be noted that electric charge is somewhat analogous to mass.
However, one important difference between mass and charge is that
charge can be either positive or negative!

Electric Charge  (contd.)

Example:

Charged particles (of all types) can be distributed (unevenly) across a 
volume, surface, or contour.

• The charge “on” a proton is         +1.602 x 10-19 C 
• The charge “on” a neutron is 0.0 C
• The charge “on” an electron is –1.602 x 10-19 C

• Essentially, charge (like mass) is a property of atomic particles. Specifically,
it is important to note that:
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v

Charge  Density
• In many cases, charged particles (e.g., electrons, protons, positive ions) are

unevenly distributed throughout some volume v.

 
0

limv
v

Q
r

v


 






Volume Charge Density

Volume charge density is a 
scalar field, and is expressed 

with units such as 
coulombs/m3.

IMPORTANT NOTE: Volume 
charge density indicates the net 
charge density at each point  𝑟

within volume v. 

Δv
 𝑟

• We define volume charge density at a specific point  𝑟 by evaluating the
total net charge ∆𝑄 in a small volume ∆𝑣 surrounding the point.
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Q: What is meant by net charge density ?

Charge  Density (contd.)

• It is therefore more instructive to define: ΔQ = ΔQ+ + ΔQ–

A: Remember, there are positively charged particles and there are
negatively charged particles, and both can exist at the same location  𝑟.

Thus, a positive charge density does not mean that no negatively
charged particles (e.g., electrons) are present, it simply means that there is
more positive charge than there is negative!

• Volume charge density can
therefore be expressed as:

     
0

limv v v
v

Q Q
r r r

v
  

 
 

 

  
 



• For example, the charge density at some location  𝑟 due to negatively
charged particles might be 10.0 C/m3, while that of positively charged
particles might be 5.0 C/m3. Therefore, the net, or total charge density is:

    35 ( 10) 5.0 /v vr r C m       
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S

Surface Charge  Density
• Another possibility is that charge is unevenly distributed across some

surface S. In this case, we can define a surface charge density as by
evaluating the total charge ΔQ on a small patch of surface Δs, located at
point  𝑟 on surface S:

Δs
 𝑟

Note the units for surface charge density will be
charge/area (e.g. C/m2).

• Surface charge density ρs(  𝑟) is defined as:  
0

lims
s

Q
r

s


 




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Line Charge  Density

• Finally, let us consider the case where charge is unevenly distributed across
some contour C. We can therefore define a line charge density as the
charge ΔQ along a small distance Δl, located at point  𝑟 of contour C.

• Line charge density ρl(  𝑟) is defined as:  
0

liml
l

Q
r

l


 





As you might expect, the units of a line charge 
density is charge per length (e.g., C/m).

C
 𝑟

Δl
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Total Charge 
Q: If we know charge density ρv(  𝑟 ), describing the charge distribution
throughout a volume v, can we determine the total charge Q contained
within this volume?

• we can determine the total charge distributed across a
surface S by integrating the surface charge density:  s

S

Q r ds 

Q: Hey! is this NOT the surface integral we studied earlier.
A: True! This is a scalar integral; sort of a 2D version of the volume integral.

 v

v

Q r dv In other words:

A: Yes definitely! Simply integrate the
charge density over the entire volume,
and you get the total charge Q
contained within the volume.

• The differential surface element ds in this integral is simply the
magnitude of the differential surface vectors we studied earlier:

ds ds

• For example, if we integrate over the surface of a
sphere, we use the differential surface element:

2 sinrds ds r d d   
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Total Charge (contd.) 
• Finally, we can determine the total charge on contour C

by integrating the line charge density ρl(  𝑟) across the
entire contour:

 rl

C

Q dl 

• The differential element dl is likewise related to the
differential displacement vector we studied earlier:

dl dl

• For example, if the contour is a circle around 
the z-axis, then dl is: ds d d   

Example – 2 
Find the total charge on a circular disc defined by 𝜌 ≤ 𝑎 and 𝑧 = 0 if: 𝜌𝑆 =
𝜌𝑆0𝑒

−𝜌 (C/m2).

2

0

0 0

a

sQ e d d





 

   

 

   0

0

2

a

sQ e d   

0 0
2

a

sQ e e         
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Example – 3
A circular beam of charge of radius 𝒂 consists of electrons moving with a
constant speed 𝒖 along the +𝒛 direction. The beam’s axis is coincident with
the z-axis and the electron charge density is given by: 𝝆𝒗 = −𝒄𝝆𝟐 (C/m3),

where 𝑐 is a constant and 𝜌 is the radial distance from the axis of the
beam. Determine the charge density per unit length.

4

/
2

l

ca
C m


  Ans:

Example – 4
A square plate in the x–y plane is situated in the space defined by −3𝑚 ≤
𝑥 ≤ 3𝑚 and −3𝑚 ≤ 𝑥 ≤ 3𝑚. Find the total charge on the plate if the

surface charge density is given by 𝜌𝑠 = 4𝑦2  𝜇𝐶
𝑚2 .
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• Charge is measured in Coulombs (C). A Coulomb is a lot of charge.
• Charge comes in both positive and negative amounts.
• Charge is conserved – it can neither be created nor destroyed.

Electric Charge – Review   

Charge can be spread out …. 

• Charge may be at a point, on a line, on a surface, or 
throughout a volume

• Linear charge density l units C/m
• Multiply by length

• Surface charge density s units C/m2

• Multiply by area
• Charge density v units C/m3

• Multiply by volume
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Goal of next few lectures 

• Develop dexterity in applying the expressions for the electric field intensity

𝐸 induced by specified distribution of charge.
• For now, our discussion will be limited to electrostatic fields generated by

stationary charges.
• We will begin by considering the expression for the electric field

developed by Coulomb.


