
Lab9 (18/3/16)

Question.1

Write a MATLAB program to determine \vec{H} using Ampere's law in the region 0 < r < 0.5m, in cylindrical coordinates, the current density is $\vec{J}=4.5e^{-2r}\hat{z}$ (A/m²) and $\vec{J}=0$ elsewhere.

Question.2

Write a MATLAB user defined program to find work and power required to move conductor shown below figure one full turn in the positive direction at a rotational frequency of N revolutions per minute, if $\vec{B} = B_0 \hat{r}$ (B_0 a positive constant).

Verify your answer for two sets of input data.

Question.3(HA)

Let \vec{J} =400 sin $\Theta/(r^2+4)$ \hat{r} A/ m^2 . Find the total current flowing through that portion of the spherical surface r = 0.8, bounded by $0.1\pi < \theta < 0.3\pi$, and $0 < \phi < 2\pi$. Verify your answer using a MATLAB program.

Question.4

Write a MATLAB program to find the flux crossing the portion of the plane $\phi = \frac{\pi}{4}$ defined by .01 < r < .05m and 0 < z < 2m. A current filament of 2.50A along the z-axis is in the \hat{z} direction.