Lab9 (18/3/16)

Question. 1

Write a MATLAB program to determine \vec{H} using Ampere's law in the region $0<\mathrm{r}<$ 0.5 m , in cylindrical coordinates, the current density is $\vec{J}=4.5 e^{-2 r} \hat{Z}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$ and $\vec{J}=0$ elsewhere.

Question. 2

Write a MATLAB user defined program to find work and power required to move conductor shown below figure one full turn in the positive direction at a rotational frequency of N revolutions per minute, if $\vec{B}=B_{0} \hat{r}$ (B_{0} a positive constant).

Verify your answer for two sets of input data.

Question.3(HA)

Let $\vec{J}=400 \sin \Theta /\left(r^{2}+4\right) \hat{r} \mathrm{~A} / m^{2}$. Find the total current flowing through that portion of the spherical surface $r=0.8$, bounded by $0.1 \pi<\theta<0.3 \pi$, and $0<\varphi<2 \pi$. Verify your answer using a MATLAB program.

Question. 4

Write a MATLAB program to find the flux crossing the portion of the plane $\phi=\frac{\pi}{4}$ defined by $.01<\mathrm{r}<.05 \mathrm{~m}$ and $0<\mathrm{z}<2 \mathrm{~m}$. A current filament of 2.50 A along the $\mathrm{z}-$ axis is in the \hat{z} direction.

