Q1: Coaxial cable parameters: $\mathrm{a}=2.5 \mathrm{~mm}, \mathrm{~b}=5.5 \mathrm{~mm}, \varepsilon_{r}=4.5, \mu_{r}=1, \sigma_{d}=10^{-4} \mathrm{~S} / \mathrm{m}$ and $\sigma_{c}=5.7 \times 10^{7} \mathrm{~S} / \mathrm{m}$.

Two-wire line: $\mathrm{a}=3 \mathrm{~mm}, \mathrm{~d}=2 \mathrm{~cm}, \sigma_{d}=10^{-4} \mathrm{~S} / \mathrm{m}$ and $\sigma_{c}=5.7 \times 10^{7} \mathrm{~S} / \mathrm{m}$.

1) Find the value of $R$, $L, G, C$ and $Z_{o}$ for the lines above. Plot $\gamma$ against frequency. ( $f$ varies from 300 MHz to 5000 MHz )
2) Plot a) For co-axial cable: Plot $Z_{o}$ against "a" and $Z_{o}$ against "b"
b) For two wire line: Plot $\mathrm{Z}_{\mathrm{o}}$ against "a" and $\mathrm{Z}_{\mathrm{o}}$ against " d "

Q2: A transmission line is terminated by two kind of loads: a) $Z_{L}=R+j X_{L}$ and b) $Z_{L}=R-j X_{L}$ Line and load parameters given as $\mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{R}=100 \Omega, \mathrm{~L}=1.33 \mu \mathrm{H}$ and $\mathrm{C}=100 \mathrm{nF}$.
a) $\operatorname{Plot}|\Gamma|, \operatorname{Re}(\Gamma)$ vs $\omega$
b) Plot SWR vs $\omega$
(f $\rightarrow 500 \mathrm{MHz}$ to 5000 MHz )

Q3: A $7 \mathrm{~V} / \mathrm{m}$ plane wave whose frequency is 500 MHz , propagates in $(-\mathrm{z})$ direction. The medium parameters are $\varepsilon_{r}=6$ and $\mu_{r}=1, \sigma=10 \mathrm{~S} / \mathrm{m}$. Write the complete expression of the electric field in time domain. Plot the phase and group velocity as a function of frequency.
(f $\rightarrow 300 \mathrm{MHz}$ to 3000 MHz )

