Lab10 (1/4/16)

Question.1

A Radial field $\vec{H} = \frac{2.39 \times 10^6}{r} \cos(\phi) \hat{r}$ A/m exists in free space. Write a MATLAB program to find the magnetic flux ϕ crossing the surface defined by $-\frac{\pi}{4} \le \phi \le \frac{\pi}{4}$, $0 \le z \le 1m$.

Question.2

A conductor lies along the z-axis at -1.5≤ z ≤1.5m and carries a fixed current of 10A in the \hat{z} direction. For a field \vec{B} =3.0X10⁻⁴ $e^{-0.2x}$ \hat{y} (T).

Write a MATLAB program to find the work and power required to move the conductor at constant speed to x=2.0m, y=0 in $5X10^{-3}$ s. Assume parallel motion along the x axis.

Question.3

In a material for which σ =5.0 S/m and ε_r =1 the electric field intensity is \vec{E} =250 sin(10¹⁰t) V/m. Write a MATLAB program to find the conduction and displacement current densities, and the frequency at which they have equal magnitudes.

Question.4(HA)

In a region 1 of fig below, $\overrightarrow{B_1}=1.2\hat{x}+0.8\hat{y}+0.4\hat{z}$ (T). Write a MATLAB program to find $\overrightarrow{H_2}$ (i.e. at z=+0) and the angles between the field vectors and a tangent to the surface.

