ECE 215

Lecture - 7

Date: 22.08.2017

- Phasors
- AC Circuits: Impedance and Admittance, Kirchoff's Laws, Phase Shifter

Phasors (contd.)

As a complex quantity, a phasor may be expressed in rectangular form, polar form, or exponential form.

$$
v(t)=V_{\substack{\text { (Time-domain } \\
\text { representation) }}}^{V_{m} \cos (\omega t+\phi) \quad \Leftrightarrow} \quad \begin{aligned}
& \mathbf{V}=V_{m} / \phi \\
& \begin{array}{c}
\text { (Phasor-domain } \\
\text { representation) }
\end{array} \\
& \hline
\end{aligned}
$$

Phasor domain is also called frequency domain

$$
\begin{aligned}
& \frac{d v}{d t}=-\omega V_{m} \sin (\omega t+\phi)=\omega V_{m} \cos \left(\omega t+\phi+90^{\circ}\right) \\
& \begin{array}{ll}
& =\operatorname{Re}\left(\omega V_{m} e^{j \omega t} e^{j \phi} e^{j 90^{\circ}}\right)=\operatorname{Re}\left(j \omega \mathbf{V} e^{j \omega t}\right) \\
\Leftrightarrow \quad \int_{\text {(Phasor domain) }} & \int_{\text {(Time domain) }} v d t
\end{array} \Leftrightarrow \frac{\mathbf{V}}{j \omega} \\
& \frac{d v}{d t} \quad \Leftrightarrow \quad j \omega \mathbf{V} \\
& \text { (Time domain) }
\end{aligned}
$$

The differences between $v(t)$ and \mathbf{V} should be understood:

1. $v(t)$ is the instantaneous or time domain representation, while \mathbf{V} is the frequency or phasor domain representation.
2. $v(t)$ is time dependent, while \mathbf{V} is not.
3. $v(t)$ is always real with no complex term, while \mathbf{V} is generally complex.

Example - 8: If $f(\phi)=\cos \phi+j \sin \phi$, show that $f(\phi)=e^{j \phi}$.
Example -9: Find the phasors corresponding to the following signals:
(a) $v(t)=21 \cos \left(4 t-15^{\circ}\right) \mathrm{V}$
(b) $i(\mathrm{t})=-8 \sin \left(10 t+70^{\circ}\right) \mathrm{mA}$
(c) $v(t)=120 \sin \left(10 t-50^{\circ}\right) \mathrm{V}$
(d) $i(\mathrm{t})=-60 \cos \left(30 t+10^{\circ}\right) \mathrm{mA}$

Example - 10: Obtain the sinusoids corresponding to each of the following phasors:
(a) $\mathbf{V}_{1}=60 \angle 15^{\circ} \mathrm{V}, \omega=1$
(b) $\mathbf{V}_{2}=6+\mathrm{j} 8 \mathrm{~V}, \omega=40$
(c) $\mathbf{I}_{1}=2.8 \mathrm{e}^{-\mathrm{j} \pi / 3} \mathrm{~A}, \omega=377$
(d) $\mathbf{I}_{2}=-0.5-\mathrm{j} 1.2 \mathrm{~A}, \omega=10^{3}$

Example-11: Simplify the following:
(a) $f(t)=5 \cos \left(2 t+155^{\circ}\right)-4 \sin \left(2 t-30^{\circ}\right)$
(b) $g(t)=8 \sin t+4 \cos \left(t+50^{\circ}\right)$
(c) $h(t)=\int_{0}^{t}(10 \cos 40 t+50 \sin 40 t) d t$

Example-12: Using phasors, determine $i(t)$ in the following equations:
(a) $2 \frac{d i}{d t}+3 i(t)=4 \cos \left(2 t-45^{\circ}\right)$
(b) $10 \int i d t+\frac{d i}{d t}+6 i(t)=5 \cos \left(5 t+22^{\circ}\right)$

Phasor Relationships for Circuit Elements

For the inductor L , assume current $i=I_{m}(\cos \omega t+$ φ), then the voltage across it is:

$$
v=L \frac{d i}{d t}=-\omega L I_{m} \sin (\omega t+\phi)
$$

Phasor Relationships for Circuit Elements

$v=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right)$

$$
\mathbf{V}=\omega L I_{m} e^{j\left(\phi+90^{\circ}\right)}=\omega L I_{m} e^{j \phi} e^{j 90^{\circ}}=\omega L I_{m} / \phi+90^{\circ}
$$

$\mathbf{V}=j \omega L \mathbf{I} \quad$ the voltage has a magnitude of $\omega L I_{m}$ and a phase of φ. The voltage and current are 90° out of phase. Specifically, the current lags the voltage by 90°.

$$
\mathbf{I}=j \omega C \mathbf{V} \quad \Rightarrow \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C}
$$

the current leads the voltage by 90°.

Example - 13

What is the instantaneous voltage across a $2 \mu \mathrm{~F}$ capacitor when the current through it is $i=4 \sin \left(10^{6} t+25^{\circ}\right) A$?

Example - 14

A voltage $v(t)=100 \cos \left(60 t+20^{\circ}\right) \mathrm{V}$ is applied to a parallel combination of a $40 \mathrm{k} \Omega$ resistor and a $50 \mu \mathrm{~F}$ capacitor. Find the steady-state currents through the resistor and the capacitor.

Example - 15

A series $R L C$ circuit has $R=80 \Omega, L=240 \mathrm{mH}$, and $C=5 \mathrm{mF}$. If the input voltage is $v(t)=100 \cos (2 t)$, find the current flowing through the circuit.

Impedance and Admittance

- we know: $\quad \mathbf{V}=R \mathbf{I}, \quad \mathbf{V}=j \omega L \mathbf{I}, \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C} \quad \frac{\mathbf{V}}{\mathbf{I}}=R, \quad \frac{\mathbf{V}}{\mathbf{I}}=j \omega L, \quad \frac{\mathbf{V}}{\mathbf{I}}=\frac{1}{j \omega C}$
- we express Ohm's law in phasor form: $\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}$ or $\mathbf{V}=\mathbf{Z I}$
where \mathbf{Z} is a frequency-dependent quantity known as impedance, measured in ohms. It is the ratio of the phasor voltage \mathbf{V} to the phasor current I, measured in Ω.
- For $\omega=0$ (i.e., dc sources): $Z_{L}=0$ and $Z_{C} \rightarrow \infty$.
- the inductor acts like a short circuit, while the capacitor acts like an open circuit.
- For $\omega \rightarrow \infty$ (i.e., high frequencies): $Z_{L} \rightarrow \infty$ and $Z_{C}=0$.
- the inductor acts like an open circuit, while the capacitor acts like a short circuit.
- complex quantity $\mathbf{Z}=R+j X \longmapsto \mathbf{Z}=|\mathbf{Z}| \angle \theta$

$$
R=|\mathbf{Z}| \cos \theta, \quad X=|\mathbf{Z}| \sin \theta \quad|\mathbf{Z}|=\sqrt{R^{2}+X^{2}}, \quad \theta=\tan ^{-1} \frac{X}{R}
$$

Impedance and Admittance

- It is sometimes (parallel circuits) convenient to work with the reciprocal of impedance, known as admittance (Y).

$$
\mathbf{Y}=\frac{1}{\mathbf{Z}}=\frac{\mathbf{I}}{\mathbf{V}} \quad \mathbf{Y}=G+j B
$$

$$
G=\frac{R}{R^{2}+X^{2}}
$$

$$
B=-\frac{X}{R^{2}+X^{2}}
$$

Example-1

A linear network has a current input $4 \cos \left(\omega t+20^{\circ}\right) \mathrm{A}$ and a voltage output $10 \cos \left(\omega t+110^{\circ}\right) \mathrm{V}$. Determine the associated impedance.

Example-2

What value of ω will cause the forced response v_{0} in this circuit to be zero?

Example - 3

Find current i in this circuit, when $v_{s}(t)=50 \cos 200 t \mathrm{~V}$.

Example - 4

Find current i in this circuit, whes $v_{s}(t)=60 \cos \left(200 t-10^{\circ}\right) \mathrm{V}$.

Example - 5

Determine the admittance \mathbf{Y} for this circuit.

Example-6

Find current i in this circuit.

Kirchoff's Laws

- cannot do circuit analysis in the frequency domain without Kirchhoff's current and voltage laws.
- Therefore, need to express them in the frequency domain.

Kirchoff's Laws

For KVL, let $v_{1}, v_{2}, \ldots \ldots ., v_{n}$ are the voltages around a closed loop.

$$
\begin{aligned}
& v_{1}+v_{2}+\cdots+v_{n}=0 \quad \longleftrightarrow V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right) \\
& +\cdots+V_{m n} \cos \left(\omega t+\theta_{n}\right)=0 \\
& \operatorname{Re}\left(V_{m 1} e^{j \theta_{1}} e^{j \omega t}\right)+\operatorname{Re}\left(V_{m 2} e^{j \theta_{2}} e^{j \omega t}\right)+\cdots+\operatorname{Re}\left(V_{m n} e^{j \theta_{n}} e^{j \omega t}\right)=0 \\
& \operatorname{Re}\left[\left(V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}+\cdots+V_{m n} e^{j \theta_{n}}\right) e^{j \omega t}\right]=0 \\
& \square \operatorname{Re}\left[\left(\mathbf{V}_{1}+\mathbf{V}_{2}+\cdots+\mathbf{V}_{n}\right) e^{j \omega t}\right]=0 \quad \square \mathbf{V}_{1}+\mathbf{V}_{2}+\cdots+\mathbf{V}_{n}=0
\end{aligned}
$$

Kirchhoff's voltage law holds for phasors.
Similarly, one can prove that Kirchhoff's current law holds in the frequency domain

Impedance Combinations

$$
\begin{gathered}
\mathbf{V}=\mathbf{V}_{1}+\mathbf{V}_{2}+\cdots+\mathbf{V}_{N}=\mathbf{I}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N}\right) \\
\mathbf{Z}_{\text {eq }}=\frac{\mathbf{V}}{\mathbf{I}}=\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N}
\end{gathered}
$$

This is similar to the series connection of resistances.

Impedance Combinations

$$
\mathbf{V}_{1}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}
$$

$$
\mathbf{V}_{2}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}
$$

voltage-division relationship

$$
\begin{gathered}
\mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{2}+\cdots+\mathbf{I}_{N}=\mathbf{V}\left(\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\cdots+\frac{1}{\mathbf{Z}_{N}}\right) \\
\frac{1}{\mathbf{Z}_{\mathrm{eq}}}=\frac{\mathbf{I}}{\mathbf{V}}=\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\cdots+\frac{1}{\mathbf{Z}_{N}} \\
\mathbf{Y}_{\mathrm{eq}}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\cdots+\mathbf{Y}_{N}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{Z}_{\mathrm{eq}}=\frac{1}{\mathbf{Y}_{\mathrm{eq}}}=\frac{1}{\mathbf{Y}_{1}+\mathbf{Y}_{2}}=\frac{1}{1 / \mathbf{Z}_{1}+1 / \mathbf{Z}_{2}}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \\
\mathbf{V}=\mathbf{I Z}_{\mathrm{eq}}=\mathbf{I}_{1} \mathbf{Z}_{1}=\mathbf{I}_{2} \mathbf{Z}_{2}
\end{gathered}
$$

$\mathbf{I}_{1}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I}$,
$\mathbf{I}_{2}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I}$
the current-division principle.

Example-7

For this circuit, calculate \mathbf{Z}_{T} and $\mathbf{V}_{a b}$.

Example-9

Find the equivalent impedance of this circuit.

Phase Shifter

- A phase-shifting circuit is used for correcting undesirable phase shift present in a circuit.
- It is also used for the creation of desired phase shifts.
- RC and RL circuits are extremely useful for this purpose.

Phase Shifter

the circuit current I leads the applied voltage by some phase angle θ, where $0<\theta<90^{\circ}$ depending on the values of R and C.

$$
\mathbf{Z}=R+j X_{C}, \square \theta=\tan ^{-1} \frac{X_{C}}{R}
$$

the amount of phase shift depends on the values of
R, C, and the operating frequency.

- These simple single stage RC circuits are generally not used in practice.
- These RC circuits also work as voltage dividers. Therefore, as the phase shift approaches 90° the output voltage approaches zero. For this reason, these simple $R C$ circuits are used only when small amounts of phase shift are required.
- For large phase shifts, the $R C$ networks are cascaded. This provides a total phase shift equal to the sum of the individual phase shifts.

Example-10

For this RC circuit:
(a) Calculate the phase shift at 2 MHz .
(b) Find the frequency where the phase
 shift is 45°.

Example-11

A coil with impedance $8+j 6 \Omega$ is connected in series with a capacitive reactance X. The series combination is connected in parallel with a resistor R. Given that the equivalent impedance of the resulting circuit is $5 \angle 0^{\circ} \Omega$, find the value of R and X.

Example-12

Consider this phase-shifting circuit.
(a) \mathbf{V}_{o} when R is maximum
(b) \mathbf{V}_{o} when R is minimum
(c) the value of R that will produce a phase shift of 45°.

