ECE 215

Lecture - 6

Date: 21.08.2017

- AC Circuits and Sinusoids

Sinusoids

- A sinusoid is a signal that has the form of the sine or cosine function.
- A sinusoidal current is usually referred to as alternating current (ac). Such a current reverses at regular time intervals and has alternately positive and negative values.
- Circuits driven by sinusoidal current or voltage sources are called ac circuits.
- Lets consider the sinusoidal voltage: $\quad v(t)=V_{m} \sin \omega t$

$$
\begin{aligned}
V_{m} & =\text { the amplitude of the sinusoid } \\
\omega & =\text { the angular frequency in radians } / \mathrm{s} \\
\omega t & =\text { the argument of the sinusoid }
\end{aligned}
$$

As a function of argument

As a function of time
the sinusoid repeats itself every T seconds $\rightarrow T$ is the period of the sinusoid.

$$
T=\frac{2 \pi}{\omega}
$$

$$
v(t+T)=V_{m} \sin \omega(t+T)=V_{m} \sin \omega\left(t+\frac{2 \pi}{\omega}\right)
$$

$$
\square=V_{m} \sin (\omega t+2 \pi)=V_{m} \sin \omega t=v(t)
$$

v has the same value at $t+T$ as it does at t and is said to be periodic

Sinusoids (contd.)

a periodic function satisfies $f(t)=f(t+n T)$, for all t and for all integers n.

- The reciprocal of T is the number of cycles per second, known as the $f=\frac{1}{T}$ cyclic frequency f of the sinusoid.

$$
\omega=2 \pi f
$$

ω is in radians per second (rad/s), f is in hertz (Hz).

- a more general expression for the sinusoid: $v(t)=V_{m} \sin (\omega t+\phi)$
$(\omega t+\varphi)$ is the argument and φ is the phase and both can be in radians or degrees
- two sinusoids:

$$
v_{1}(t)=V_{m} \sin \omega t \quad v_{2}(t)=V_{m} \sin (\omega t+\phi)
$$

v_{2} leads v_{1} by ϕ or that v_{1} lags v_{2} by ϕ If $\varphi \neq 0$, then v_{1} and v_{2} are out of phase.

If $\varphi=0$, then v_{1} and v_{2} are inphase.
they reach their minima and maxima at exactly the same time

Sinusoids (contd.)

We can compare both the sinusoids in this manner because they operate at the same frequency; they do not need to have the same amplitude.

- A sinusoid can be expressed in either sine or cosine form.
- When comparing two sinusoids, it is expedient to express both as either sine or cosine with positive amplitudes.
- With these identities:

$$
\begin{aligned}
\sin \left(\omega t \pm 180^{\circ}\right) & =-\sin \omega t \\
\cos \left(\omega t \pm 180^{\circ}\right) & =-\cos \omega t \\
\sin \left(\omega t \pm 90^{\circ}\right) & = \pm \cos \omega t \\
\cos \left(\omega t \pm 90^{\circ}\right) & =\mp \sin \omega t
\end{aligned}
$$

- This is achieved by using the following trigonometric identities:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B
\end{aligned}
$$

Use these to transform a sinusoid from sine form to cosine form or vice versa.

Sinusoids (contd.)

Alternative Graphical Approach:

- the horizontal axis represents the magnitude of cosine
- the vertical axis (pointing down) denotes the magnitude of sine.
- Angles are measured positively counterclockwise from the horizontal, as usual in polar coordinates.
graphical technique can also be used to add two sinusoids of the same frequency when one is in sine form and the other is in cosine form.

$$
A \cos \omega t+B \sin \omega t=C \cos (\omega t-\theta)
$$

$$
C=\sqrt{A^{2}+B^{2}}, \quad \theta=\tan ^{-1} \frac{B}{A}
$$

Sinusoids (contd.)

$3 \cos \omega t-4 \sin \omega t=5 \cos \left(\omega t+53.1^{\circ}\right)$
Do not confuse the sine and cosine axes with the axes for complex numbers. It is a natural tendency to have the vertical axis point up, however the positive direction of the sine function is pointing down.

Example - 5: A current source in a linear circuit is $i_{s}=8 \cos \left(500 \pi t-25^{\circ}\right) \mathrm{A}$ (a) What is the amplitude of the current? (b) What is the angular frequency? (c)Find the frequency of the current. (d) What is i_{s} at $\mathrm{t}=2 \mathrm{~ms}$.

Example-6:

Given $v_{1}=20 \sin \left(\omega t+60^{\circ}\right)$ and $v_{2}=60 \cos \left(\omega t-10^{\circ}\right)$ determine the phase angle between the two sinusoids and which one lags the other.

Example-7: For these pairs of, determine which one leads and by how much.
(a) $v(t)=10 \cos \left(4 t-60^{\circ}\right)$ and $i(t)=4 \sin \left(4 t+50^{\circ}\right)$
(b) $v_{1}(t)=4 \cos \left(377 t+10^{\circ}\right)$ and $v_{2}(t)=-20 \cos 377 t$
(c) $x(t)=13 \cos 2 t+5 \sin 2 t$ and $y(t)=15 \cos \left(2 t-11.8^{\circ}\right)$

Phasors

- phasor is a complex number that represents amplitude and phase of a sinusoid.
- phasors provide a simple means of analyzing linear circuits excited by sinusoidal sources.

Complex Number:

$$
z=x+j y \quad \text { Rectangular form }
$$

$$
\begin{aligned}
& z=r \angle \phi \\
& z=r e^{j \phi}
\end{aligned}
$$

Polar form
Exponential form

Given x and y, we can get r and φ as:

$$
r=\sqrt{x^{2}+y^{2}}, \quad \phi=\tan ^{-1} \frac{y}{x}
$$

if we know r and φ we can obtain x and y as

$$
x=r \cos \phi, \quad y=r \sin \phi
$$

- Addition and subtraction of complex numbers are easier in rectangular form; multiplication and division are simpler in polar form.

$$
z=x+j y=r \angle \phi, \quad z_{1}=x_{1}+j y_{1}=r_{1} \angle \underline{\phi_{1}} \quad z_{2}=x_{2}+j y_{2}=r_{2} \angle \underline{\phi_{2}}
$$

Phasors (contd.)

Addition:

$z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)$

Multiplication: $z_{1} z_{2}=r_{1} r_{2} / \underline{\phi_{1}+\phi_{2}}$

Reciprocal: $\frac{1}{z}=\frac{1}{r} L-\phi$

Complex Conjugate:
$z^{*}=x-j y=r /-\phi=r e^{-j \phi}$

Subtraction:

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
$$

Division: $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} / \phi_{1}-\phi_{2}$
Square Root: $\sqrt{z}=\sqrt{r} / \phi / 2$
idea of phasor representation
is based on Euler's identity: $\quad e^{ \pm j \phi}=\cos \phi \pm j \sin \phi$

$$
\begin{aligned}
\cos \phi & =\operatorname{Re}\left(e^{j \phi}\right) \\
\sin \phi & =\operatorname{Im}\left(e^{j \phi}\right)
\end{aligned}
$$

$$
v(t)=V_{m} \cos (\omega t+\phi)=\operatorname{Re}\left(V_{m} e^{j(\omega t+\phi)}\right) \quad v(t)=\operatorname{Re}\left(V_{m} e^{j \phi} e^{j \omega t}\right)
$$

to obtain the sinusoid corresponding to a given phasor \mathbf{V}, multiply the phasor by the time factor and take the real part.

Phasors (contd.)

As a complex quantity, a phasor may be expressed in rectangular form, polar form, or exponential form.

$$
v(t)=V_{\substack{\text { (Time-domain } \\
\text { representation) }}}^{V_{m} \cos (\omega t+\phi) \quad \Leftrightarrow} \quad \begin{aligned}
& \mathbf{V}=V_{m} / \phi \\
& \begin{array}{c}
\text { (Phasor-domain } \\
\text { representation) }
\end{array} \\
& \hline
\end{aligned}
$$

Phasor domain is also called frequency domain

$$
\begin{aligned}
& \frac{d v}{d t}=-\omega V_{m} \sin (\omega t+\phi)=\omega V_{m} \cos \left(\omega t+\phi+90^{\circ}\right) \\
& \begin{array}{ll}
& =\operatorname{Re}\left(\omega V_{m} e^{j \omega t} e^{j \phi} e^{j 90^{\circ}}\right)=\operatorname{Re}\left(j \omega \mathbf{V} e^{j \omega t}\right) \\
\Leftrightarrow \quad \int_{\text {(Phasor domain) }} & \int_{\text {(Time domain) }} v d t
\end{array} \Leftrightarrow \frac{\mathbf{V}}{j \omega} \\
& \frac{d v}{d t} \quad \Leftrightarrow \quad j \omega \mathbf{V} \\
& \text { (Time domain) }
\end{aligned}
$$

The differences between $v(t)$ and \mathbf{V} should be understood:

1. $v(t)$ is the instantaneous or time domain representation, while \mathbf{V} is the frequency or phasor domain representation.
2. $v(t)$ is time dependent, while \mathbf{V} is not.
3. $v(t)$ is always real with no complex term, while \mathbf{V} is generally complex.
