ECE 215

Lecture - 5

Date: 14.08.2017

- Second-Order Circuit (contd.)

Step Response of a Series RLC Circuit

- Apply KVL around the loop for $\mathrm{t}>0$:
$L \frac{d i}{d t}+R i+v=V_{s} \quad i=C \frac{d v}{d t}$

$$
\frac{d^{2} v}{d t^{2}}+\frac{R}{L} \frac{d v}{d t}+\frac{v}{L C}=\frac{V_{s}}{L C} \quad \begin{gathered}
\text { solution has two } \\
\text { components }
\end{gathered} \quad v(t)=v_{t}(t)+v_{s s}(t)
$$

- $v_{t}(t)$ dies out with time and is of the form:

$$
\begin{aligned}
& v_{t}(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \quad \text { (Overdamped) } \\
& v_{t}(t)=\left(A_{1}+A_{2} t\right) e^{-\alpha t} \quad \text { (Critically damped) } \\
& v_{t}(t)=\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t} \quad \text { (Underdamped) }
\end{aligned}
$$

- $v_{S S}(t)$ is the final value of the capacitor voltage.

$$
v_{s s}(t)=v(\infty)=V_{s}
$$

Step Response of a Series RLC Circuit (contd.)

- the complete solutions are:

$$
\begin{gathered}
v(t)=V_{s}+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \\
\text { (Overdamped) } \\
v(t)=V_{s}+\left(A_{1}+A_{2} t\right) e^{-\alpha t} \\
(\text { Critically damped) } \\
v(t)=V_{s}+\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t} \\
\text { (Underdamped) }
\end{gathered}
$$

- The values of A_{1} and A_{2} are obtained from the initial conditions: $v(0)$ and $d v(0) / d t$
- Just to reiterate: v and i are the voltage across the capacitor and the current through the inductor respectively.
- Above expressions help in finding v.
- once the capacitor voltage is $v_{c}=v$ is known, we can determine $i=C d v / d t$ which is the same current through the capacitor, inductor, and resistor.
- the voltage across the resistor is $v_{R}=i R$ while the inductor voltage is $L d i / d t$.
- Alternatively, the complete response for any variable $x(t)$ can be found directly, because it has the general form:

$$
x(t)=x_{s s}(t)+x_{t}(t)
$$

Example-1

For this circuit, find $\mathrm{v}(\mathrm{t})$ for $\mathrm{t}>0$.

- For $\mathrm{t}=0$-, the equivalent circuit is:

$$
\mathrm{i}(0-)=0, \mathrm{v}(0-)=-2 \times 6=-12 \mathrm{~V}
$$

- For t > 0, we have a series RLC circuit with a step input.

$$
\alpha=\mathrm{R} /(2 \mathrm{~L})=6 / 2=3 \quad \omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{0.04}
$$

Underdamped

$$
\begin{gathered}
s=-3 \pm \sqrt{9-25}=-3 \pm j 4 \\
\quad v(t)=V_{f}+\left[(A \cos 4 t+B \sin 4 t) e^{-3 t}\right]
\end{gathered}
$$

Example - 1 (contd.)

$\mathrm{V}_{\mathrm{f}}=$ final capacitor voltage $=50 \mathrm{~V} \quad \square \mathrm{v}(\mathrm{t})=50+\left[(\mathrm{A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]$
$\mathrm{v}(0)=-12=50+\mathrm{A} \quad \mathrm{A}=-62 \quad \mathrm{i}(0)=0=\operatorname{Cdv}(0) / \mathrm{dt}$

$$
\begin{gathered}
\mathrm{dv} / \mathrm{dt}=\left[-3(\mathrm{~A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]+\left[4(-\mathrm{A} \sin 4 \mathrm{t}+\mathrm{B} \cos 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right] \\
0=\mathrm{dv}(0) / \mathrm{dt}=-3 \mathrm{~A}+4 \mathrm{~B} \text { or } \mathrm{B}=(3 / 4) \mathrm{A}=-46.5 \\
\mathrm{v}(\mathrm{t})=\underline{\mathbf{5 0}+\left[(\mathbf{- 6 2} \cos 4 \mathrm{t}-\mathbf{4 6 . 5} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right] \mathbf{V}}
\end{gathered}
$$

Practice Example

A series $R L C$ circuit is described by: $\quad L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=2$
Find the response when $L=0.5 H, R=4 \Omega$, and $C=0.2 F$. Let $i(0)=1, d i(0) / d t=0$.

Step Response of a Parallel RLC Circuit

- Apply KCL at the top node for $\mathrm{t}>0$:

$$
\frac{v}{R}+i+C \frac{d v}{d t}=I_{s} \quad \square \quad v=L \frac{d i}{d t}
$$

$$
\frac{d^{2} i}{d t^{2}}+\frac{1}{R C} \frac{d i}{d t}+\frac{i}{L C}=\frac{I_{s}}{L C}
$$

$i(t)=i_{t}(t)+i_{s s}(t)$

$$
\begin{gathered}
i(t)=I_{s}+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \\
i(t)=I_{s}+\left(A_{1}+A_{2} t\right) e^{-\alpha t} \quad(\text { Critically damped })
\end{gathered}
$$

$$
i(t)=I_{s}+\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t} \quad \text { (Underdamped) }
$$

A_{1} and A_{2} to be determined from $i(0)$ and $d i(0) / d t$.

- Alternatively, the complete response for any variable $x(t)$ can be found directly, because it has the general form:

$$
x(t)=x_{s s}(t)+x_{t}(t)
$$

Example-2

find $i(t)$ for $t>0$ in this circuit:

General Second-Order Circuits

- the series and parallel RLC circuits are the second-order circuits of greatest interest, other second-order circuits including op amps are also useful.
- for a second-order circuit, we determine its step response $x(t)$ (which may be voltage or current) by taking the following four steps:

1. We first determine the initial conditions $x(0)$ and ${ }^{d x(0)} / d t$ and the final value $x(\infty)$.
2. We turn off the independent sources and find the form of the transient response $x_{t}(t)$ by applying KCL and KVL.
3. We obtain the steady-state response as: $x_{s s}(t)=x(\infty)$.
4. The total response is then found as the sum of the transient response and steady-state response.

Automobile Ignition System

- Earlier, considered the automobile ignition system as a charging system. That was only a part of the system.
- another part-the voltage generating system.
- The $12-\mathrm{V}$ source is due to the battery and alternator.
- The 4Ω resistor represents the resistance of the wiring.
- The ignition coil is modeled by the $8-\mathrm{mH}$
 inductor.
- The $1 \mu F$ capacitor (known as the condenser to auto mechanics) is in parallel with the switch (known as the breaking points or electronic ignition).

Example-3

An automobile airbag igniter is modeled by the following circuit. Determine the time it takes the voltage across the igniter to reach its first peak after switching from A to B. Let $R=3 \Omega$, $C=1 / 30 \mathrm{pF}$, and $\mathrm{L}=60 \mathrm{mH}$.

Example-4

A load is modeled as a $250-\mathrm{mH}$ inductor in parallel with a 12Ω resistor. A capacitor is needed to be connected to the load so that the network is critically damped at 60 Hz . Calculate the size of the capacitor.

