Memristor - The fourth fundamental element

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

8/1/2017

- When Maxwell announces equations relating to electricity and magnetism, Leon Chua argued from theoretical grounds that there should be a fourth circuit element that was equally fundamental as the other three.
- That element is termed as MEMRISTOR resistor with memory.
- It was predicted from theory arguments nearly 40 years ago, but not realized as a physical component that time.
- Work of Chua has not recognized until a group at HP labs managed to construct a physical component acting as memristor.

- The memristors exhibit varying resistance when current flows into the device or out of the device.
- When current flows inside memristor (opposite of black strip), its resistance increases.
- When current flows inside memristor (black strip), its resistance decreases.

Memristor is basically a charge-dependent resistor:

V(t) = M(q(t)) * I(t)

- Memristors can be used for memory implementation, where the logic bits are stored as resistance states.
- Memristors are non-volatile i.e. retain its state even after power is turned off.

Fabrication of memristor

Contd.....

Models

- Several models of ideal and non-ideal memresistive elements in the most popular SPICE versions.
- > Model R.1: Ideal memristor
- Model R.2: Bipolar memristive system with threshold
- Other model is TEAM model: Threshold Adaptive Memristor Model.

Memresistance States

Frequency- 50MHz

8/1/2017

Frequency- 5GHz

- Four separate logic families can be distinguished:
- Logic in memory, where the logic operations are done within memory cells. In this family the logic values are stored as resistance. Gates in this family include IMPLY and MAGIC.
- Hybrid CMOS Memristor Logic: In this family, requires both CMOS gates along with memristor based gates. Logic values are stored as voltages.
- Novel design using memresistors where only memresistors are used as computational unit. Logic values are stored as memresistance of output memresistor.
- Programmable Logic Memristor Array (PLA). This family is in fact a regular PLA, where the connections between horizontal and vertical wires are done with memristors.

Hybrid CMOS circuits

- In this logic, the voltages are used as logic state.
- In this design, output is measured in terms of voltage.
- Buffers are needed to get correct voltage levels.
- For implementing NOR and NAND gates, extra inverters are required at the output side.

Example of Comparator

Results

Stand-Alone Memristors

- New kind of memristor-based logic circuits, which need less number of memristors and operation steps.
- The logic operations can be performed and stored in the memory directly.
- Logic states are input voltages applied at input and output is stored as the memresistance of the output memristor.
- Bipolar voltage is applied as the logic state of the memristors.

OR Gate

Waveform of OR gate

8/1/2017

Can you design NOR gate???

What changes required in previous circuit??

What change noticed?

• Only change required is change in the direction of OUT memristor.

•Thus by changing memristor directions, operation reverses but number of memristors remain same.

Can try more Logic Gates !!!

AND Gate

NAND Gate

]	
-						
r · · · · · · · · · · · · · · · · · · ·	 	 Ju 150)u)u 250	 0u 350	u 400u

•TRY EXOR Gate!!

EXOR Gate

•It require inverters at input side.

1 - 500m -	
2 · · · · · · · · · · · · · · · · · · ·	

Combinational Circuits

Name few of them??

- Full Adder
- Logic Comparators
- Binary to Gray Code Converters

and many more.....

Full-adder

Truth Table of Full Adder:

Α	В	С	SUM	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $SUM = A \oplus B \oplus C$

CARRY = AB + BC + AC

29

Few Examples of Logic Circuits

• Full Adder with the help of Memristors

<u>Summary</u>

- Memristor considered as a fourth fundamental, is a 2terminal electrical circuit element that changes its resistance depending on the total amount of charge that flows through the device.
- Memristor's non-volatility, good scalability, low power consumption and compatibility with CMOS structures makes them an ideal device for various applications.
- Since field is in early stage of research, no perfect model yet describes the physical properties of memristor.
- It is believed that memristor will change the circuit design in 21st century as transistor did in 20th century.

