
Lecture – 24 Date: 31.10.2017

• Multi-port networks (Contd.), Scattering Matrix 
• Matched, Lossless, and Reciprocal Networks 



Scattering Matrix

• At “low” frequencies, a linear device or network can be fully characterized
using an impedance or admittance matrix, which relates the currents and
voltages at each device terminal to the currents and voltages at all other
terminals.

• But, at high frequencies, it is not feasible to measure total currents and
voltages!

• Instead, we can measure the magnitude and phase of each of the two
transmission line waves V+(z) and V−(z) → enables determination of

relationship between the incident and reflected waves at each
device terminal to the incident and reflected waves at all other
terminals

• These relationships are completely represented by the scattering matrix
that completely describes the behavior of a linear, multi-port device at a
given frequency ω, and a given line impedance Z0



Scattering Matrix (contd.)
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Viewing transmission line
activity this way, we can fully
characterize a multi-port
device by its scattering
parameters!

Note that we have now
characterized transmission line
activity in terms of incident and
“reflected” waves. The negative
going “reflected” waves can be
viewed as the waves exiting the
multi-port network or device.



Scattering Matrix (contd.)

• Say there exists an incident wave on port 1 (i.e., V1
+ (z1) ≠ 0), while the

incident waves on all other ports are known to be zero (i.e., V2
+(z2)

=V3
+(z3) =V4

+(z4) =0).

The complex ratio between V1
+(z1 = z1P) and V2

−(z2 = z2P) is known 
as the scattering parameter S21

Say we measure/determine the voltage of
the wave flowing into port 1, at the port 1
plane (i.e., determine V1

+(z1 = z1P)).
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Say we then measure/determine the voltage
of the wave flowing out of port 2, at the
port 2 plane (i.e., determine V2

−(z2 =z2P)).
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Scattering Matrix (contd.)

Therefore:  
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• We of course could also define, say, scattering parameter S34 as the ratio
between the complex values V3

−(z3 = z3P) (the wave out of port 3) and
V4

+(z4 = z4P) (the wave into port 4), given that the input to all other ports
(1,2, and 3) are zero
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( ) 0k kV z  for all  k ≠ n

• Thus, more generally, the ratio of the wave incident on port n to the wave
emerging from port m is:



Scattering Matrix (contd.)

• Note that, frequently the port positions
are assigned a zero value (e.g., z1P=0,
z2P=0). This of course simplifies the
scattering parameter calculation:
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• We will generally assume that the port locations
are defined as znP=0, and thus use the above
notation. But remember where this expression
came from!

Q: How do we ensure that only one 
incident wave is non-zero ?

A: Terminate all other ports with a matched
load!
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Scattering Matrix (contd.) • Note that if the ports are
terminated in a matched
load (i.e., ZL =Z0), then
(Γ0)n = 0 and therefore:

( ) 0n nV z 

In other words, terminating a 
port ensures that there will 

be no signal incident on that 
port!



Scattering Matrix (contd.) 

V−(z) = 0         if             Γ0 = 0

Just between you and me, I think 
you’ve messed this up! In all previous 
slides you said that if Γ0 = 0 , the wave 
in the minus direction would be zero:

but just now you said that the wave in the positive 
direction would be zero:

V+(z) = 0         if             Γ0 = 0

Obviously, there is no way that both statements can be correct!



Scattering Matrix (contd.) 

Actually, both statements are correct! You must be careful to understand 
the physical definitions of the plus and minus directions—in other words, 

the propagation directions of waves Vn
+ (zn) and Vn

− (zn)!

In this original case, the wave incident on the load is V+(z) (plus direction), 
while the reflected wave is V−(z) (minus direction).

For example, we originally analyzed this case:

1 1( )V z

1 1( )V z

0 V−(z ) = 0         if             Γ0 = 00Z



Scattering Matrix (contd.) 

Contrast this with the case we are now considering:           

n-port 
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Microwave 
Network
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• For this current case, the situation is reversed. The wave incident on the
load is now denoted as Vn

−(zn) (coming out of port n), while the wave
reflected off the load is now denoted as Vn

+(zn) (going into port n ).



Scattering Matrix (contd.) 

• back to our discussion of S-parameters. We
found that if znP = 0 for all ports n, the
scattering parameters could be directly written
in terms of wave amplitudes Vn

+ and Vm
−

m
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• Which we can now equivalently state as:

m
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 (for all ports, except port n, are terminated in matched loads)

• One more important note—notice that for the ports terminated in
matched loads (i.e., those ports with no incident wave), the voltage of the
exiting wave is also the total voltage!
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Scattering Matrix (contd.) 
• We can use the scattering matrix to determine the solution for a more

general circuit—one where the ports are not terminated in matched
loads!

• Since the device is linear, we can apply superposition. The output at any
port due to all the incident waves is simply the coherent sum of the
output at that port due to each wave!

• More generally, the output at 
port m of an N-port device is:
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• For example, the output wave at

port 3 can be determined by
(assuming znP = 0 ):

• This expression of Scattering
parameter can be written in
matrix form as:

- +V =SV



Scattering Matrix (contd.) 

- +V =SV

• The scattering matrix is N by N matrix that completely characterizes a
linear, N-port device. Effectively, the scattering matrix describes a multi-
port device the way that Γ0 describes a single-port device (e.g., a load)!
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• The values of the scattering
matrix for a particular device or
network, like Γ0, are frequency
dependent! Thus, it may be more
instructive to explicitly write:
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• Also realize that—also just like Γ0—the scattering matrix is dependent on
both the device/network and the Z0 value of the cable connected to it.

• Thus, a device connected to cables with Z0 =50Ω will have a completely
different scattering matrix than that same device connected to
transmission lines with Z0 =100Ω



Matched, Lossless, Reciprocal Devices 

• A device can be lossless or reciprocal. In addition, we can also classify it as
being matched.

• Let’s examine each of these three characteristics, and how they relate to
the scattering matrix.

A matched device is another way of saying that the input impedance at each
port is equal to Z0 when all other ports are terminated in matched loads. As a
result, the reflection coefficient of each port is zero—no signal will come out
from a port if a signal is incident on that port (but only that port!).

Matched Device

When all the ports ‘m’ 
are matched 

• In other words: 0m mm mV S V   For all m

• It is apparent that a matched
device will exhibit a
scattering matrix where all
diagonal elements are zero.

S=

0 0.1 𝑗0.2
0.1 0 0.3
𝑗0.2 0.3 0



Matched, Lossless, Reciprocal Devices (contd.)
Lossless Device

• For a lossless device, all of the power that is delivered to each device port
must eventually find its way out!

• In other words, power is not absorbed by the network—no power to be
converted to heat!
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• The power incident on some port m is related to the

amplitude of the incident wave (Vm
+) as:

• The power of the wave exiting the port is:
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• power absorbed by that port is the difference
of the incident power and reflected power:
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• For an N-port device, the total incident power is: 
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Matched, Lossless, Reciprocal Devices (contd.)

• Recall that the incident and reflected wave amplitudes
are related by the scattering matrix of the device as:

- +V =SV

• Therefore:    
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• Therefore the total power delivered to the N-port device is:
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Matched, Lossless, Reciprocal Devices (contd.)

• For a lossless device: ∆P=0
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• Therefore: 0H I S S

If a network is lossless, then its scattering matrix S is unitary

H  IS S

a special kind of matrix known as a unitary matrix

• How to recognize a unitary matrix?

The columns of a unitary matrix form an orthonormal set!

12

22

32

13

23

33

14

24

34

11

21

31

41 4 44342

S

S

S

S

S

S

S

S

S

S S

S

S

SS

S

 
 
 
 
 
 

S

Example:
each column of the scattering matrix 
will have a magnitude equal to one
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inner product (i.e., dot product) of 
dissimilar columns must be zero
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Matched, Lossless, Reciprocal Devices (contd.)
• For example, for a lossless three-port device: say a signal

is incident on port 1, and that all other ports are
terminated. The power incident on port 1 is therefore:
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• and the power exiting the device at each
port is:
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• The total power exiting the device is therefore:
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• Since this device is lossless, the incident power
(only on port 1) is equal to exiting power (i.e,
P− =P1

+). This is true only if:
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• Of course, this will be true if the incident wave
is placed on any of the other ports of this
lossless device:
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Matched, Lossless, Reciprocal Devices (contd.)

• We can state in general then that:
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• In other words, the columns of the scattering matrix must have unit
magnitude (a requirement of all unitary matrices). It is apparent that this
must be true for energy to be conserved.

• An example of a (unitary)
scattering matrix for a 4-port
lossless device is:
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Reciprocal Device

• Recall reciprocity results when we build a passive (i.e., unpowered) device
with simple materials.

• For a reciprocal network, we find that the elements of the scattering
matrix are related as:

mn nmS S



Matched, Lossless, Reciprocal Devices (contd.)

• For example, a reciprocal device will have S21 = S12 or S32 =S23. We can
write reciprocity in matrix form as:

TS = S where T indicates transpose.

• An example of a scattering matrix describing a reciprocal, but lossy and
non-matched device is:
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Example – 3 

• A lossless, reciprocal 3-port device has S-parameters of 𝑆11 =  1 2, 𝑆31 =

 1 √2
, and 𝑆33 = 0. It is likewise known that all scattering parameters are

real.

→ Find the remaining 6 scattering parameters.

Q: This problem is clearly impossible—you 
have not provided us with sufficient 

information!

A: Yes I have! Note I said the device was lossless and
reciprocal!



Example – 3 (contd.)

• Start with what we currently know: S=

 1 2 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
 1 √2

𝑆32 0

• As the device is reciprocal, we then also know:

𝑺𝟏𝟐 = 𝑺𝟐𝟏 𝑺𝟏𝟑 = 𝑺𝟑𝟏 =  𝟏 √𝟐
𝑺𝟑𝟐 = 𝑺𝟐𝟑

• And therefore: S=

 1 2 𝑆21  1 √2

𝑆21 𝑆22 𝑆32
 1 √2

𝑆32 0

• Now, since the device is lossless, we know that:
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Columns have
unit magnitude



Example – 3 (contd.)

* * * * * *
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Dissimilar columns 
are orthogonal

We can simplify these expressions and can further simplify them by using 
the fact that the elements are all real, and therefore 𝑆21 = 𝑆21

∗ (etc.).

Q: I count the simplified expressions and find 6 equations 
yet only a paltry 3 unknowns. Your typical buffoonery 

appears to have led to an over-constrained condition for 
which there is no solution!



Example – 3 (contd.)

A: Actually, we have six real equations and six real unknowns, since
scattering element has a magnitude and phase. In this case we know the
values are real, and thus the phase is either 0° or 180°(i.e., 𝑒𝑗0 = 1 or 𝑒𝑗𝜋 =
− 1); however, we do not know which one!

• the scattering matrix for the given
lossless, reciprocal device is: S=

 1 2  1 2  1 √2

 1 2  1 2 −  1 √2

 1 √2
−  1 √2

0


