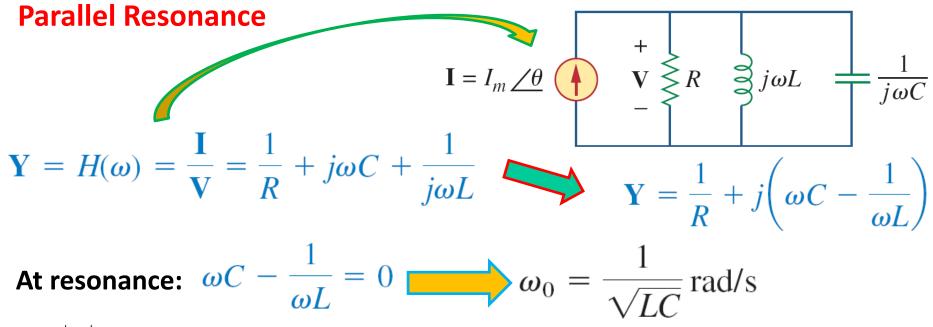
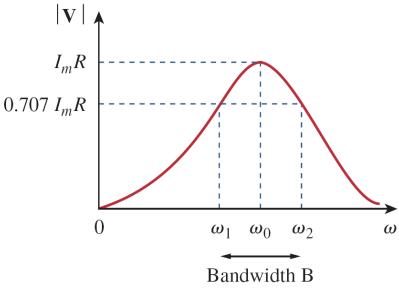
<u> Lecture – 17</u>

Date: 09.10.2017

- Parallel Resonance
- Active and Passive Filters





- The voltage |V| as a function of frequency.
- At resonance, the parallel *LC* combination acts like an open circuit, so that the entire current flows through *R*.

Parallel Resonance (contd.)

• For parallel resonance:

$$\omega_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$
$$\omega_2 = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

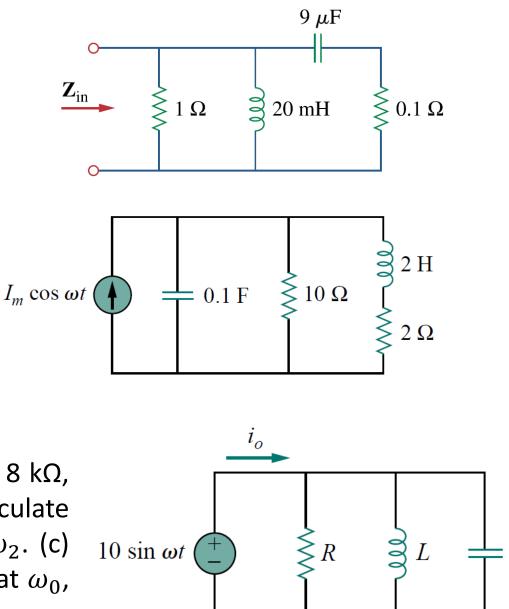
$$B = \omega_2 - \omega_1 = \frac{1}{RC}$$
$$Q = \frac{\omega_0}{B} = \omega_0 RC = \frac{R}{\omega_0 L}$$
$$\omega_1 = \omega_0 \sqrt{1 + \left(\frac{1}{2Q}\right)^2} - \frac{\omega_0}{2Q}$$
$$\omega_2 = \omega_0 \sqrt{1 + \left(\frac{1}{2Q}\right)^2} + \frac{\omega_0}{2Q}$$

• Half-power frequencies in terms of the quality factor:

• For high-Q circuits:
$$\omega_1 \simeq \omega_0 - \frac{B}{2}$$
, $\omega_2 \simeq \omega_0 + \frac{B}{2}$

Example – 1

Find: (a) the resonant frequency ω_0 ; (b) $Z_{in}(\omega_0)$



Example – 2

Determine the resonant frequency of this circuit:

Example – 3

In this parallel *RLC* circuit, let $R = 8 \text{ k}\Omega$, L = 0.2 mH, and $C = 8 \mu\text{F}$. (a) Calculate ω_0 , Q, and B. (b) Find ω_1 and ω_2 . (c) Determine the power dissipated at ω_0 , ω_1 , and ω_2 .

Filters

A <u>filter</u> is a circuit that is designed to pass signals with desired frequencies and reject or attenuate others.

- a frequency-selective device → a filter can be used to limit the frequency spectrum of a signal to some specified band of frequencies.
- These are used in radio and TV receivers \rightarrow allows the selection of one desired signal out of a multitude of broadcast signals in the environment.

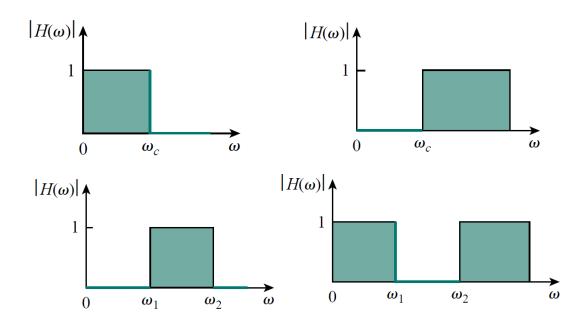
A filter is a *passive filter* if it consists of only passive elements *R*, *L*, and *C*.

It is said to be an *active filter* if it consists of active elements (such as transistors and op amps) in addition to passive elements *R*, *L*, and *C*.

Passive Filters

Filters can be classified as

- Low Pass Filter
- High Pass Filter
- Band Pass Filter
- Band Stop Filter (Band Reject/Eliminate Filter)



Type of Filter	H(0)	$H(\infty)$	$H(\omega_c)$ or $H(\omega_0)$
Lowpass	1	0	$1/\sqrt{2}$
Highpass	0	1	$1/\sqrt{2}$
Bandpass	0	0	1
Bandstop	1	1	0

 ω_c is the cutoff frequency for lowpass and highpass filters; ω_0 is the center frequency for bandpass and bandstop filters.

Low Pass Filter

- LPF ideally allows lower frequencies and attenuates higher frequencies.
- A typical low pass filter is formed when the output of an RC circuit is taken off the capacitor.

 $H(0) = 1 \text{ and } H(\infty) = 0$

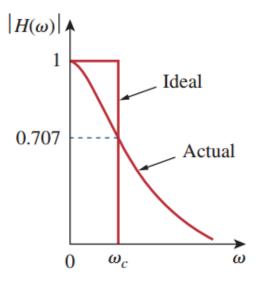
- ω_c is the cut-off frequency: It is a frequency at which $|H(\omega)|$ drops to 70.07% of $|H(\omega)|_{max}$ or becomes $\frac{1}{\sqrt{2}}$ of $|H(\omega)|_{max}$.
- So, here, ω_c can be calculated as:

$$H(\omega_c) = \frac{1}{\sqrt{1 + \omega_c^2 R^2 C^2}} = \frac{1}{\sqrt{2}} \quad \Longrightarrow \omega_c = \frac{1}{RC}$$

A low pass filter can also be formed when the output of an *RL* circuit is taken off the resistor.

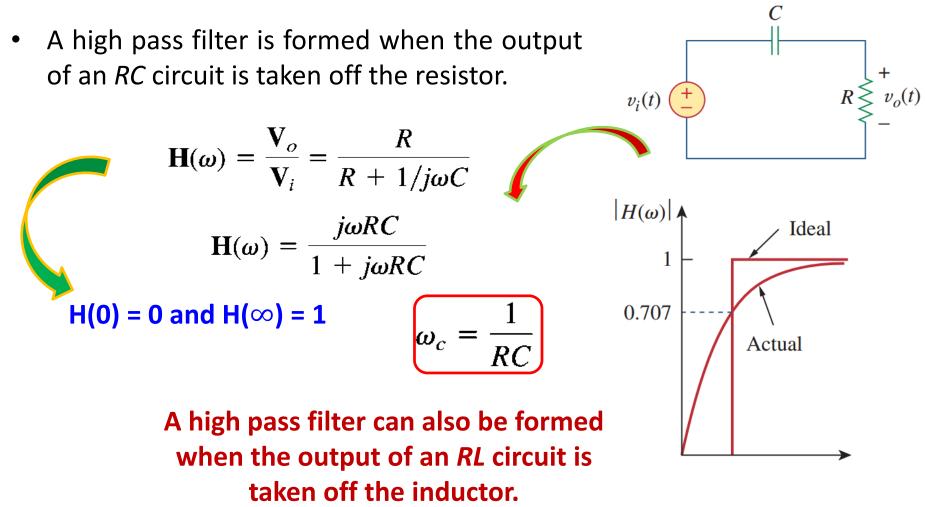
$$\mathbf{H}(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{1/j\omega C}{R + 1/j\omega C}$$

$$\mathbf{H}(\boldsymbol{\omega}) = \frac{1}{1 + j\boldsymbol{\omega}RC}$$



High Pass Filter

One of the simplest form of HPF



Band Pass Filter

RLC series The resonant circuit provides a band pass filter when the output is taken off the resistor

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R}{R + j(\omega L - 1/\omega C)}$$

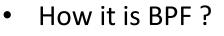
H(0) = 0 and H(
$$\infty$$
) = 0

L

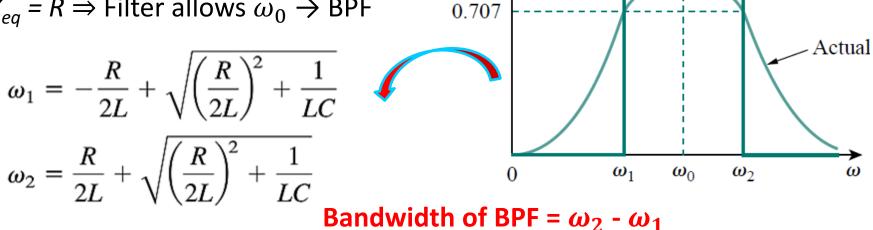
 $v_i(t)$

С

Ideal



- Resonance Frequency, ω_0 !!!!!
- $Z_{eq} = R \Rightarrow$ Filter allows $\omega_0 \rightarrow$ BPF



 $|H(\omega)|$

Band Pass Filter

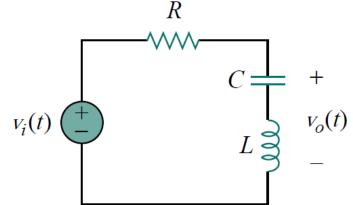
$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$
 Where $\omega_0 = \frac{1}{\sqrt{LC}} = \sqrt{\omega_1 \omega_1}$

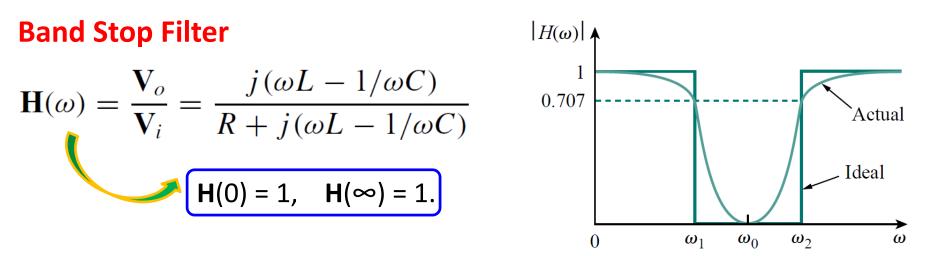
A band pass filter can also be formed by cascading the low pass filter (where $\omega_2 = \omega_c$) with the high pass filter (where $\omega_1 = \omega_c$).

Band Stop Filter

A filter that prevents a band of frequencies between two designated values $(\omega_1 \text{ and } \omega_2)$ from passing is variably known as a *band stop, band reject*, or *notch* filter.

 A typical band stop filter characteristic is achieved when the output in the *RLC* series resonant circuit is taken off the *LC* series combination





• But at resonance frequency: $v_0 = 0 \Rightarrow$ Filters blocks ω_0

Here, ω_0 is called the *frequency of rejection*, while the corresponding bandwidth ($B = \omega_2 - \omega_1$) is known as the *bandwidth of rejection*.

adding the transfer functions of the band pass and the Band stop gives unity at any frequency for the same values of R, L, and C \rightarrow results into all pass filter

Passive Filter – Summary

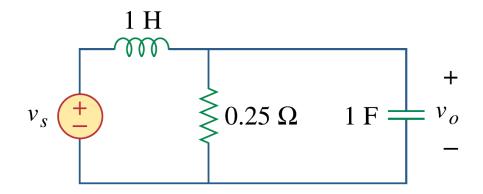
- the maximum gain of a passive filter is unity. To generate a gain greater than unity, one should use an active filter.
- There are other ways to get the types of filters.
- The filters discussed here are the simple types. Many other filters have sharper and complex frequency responses.

Example – 4

Show that a series *LR* circuit is a lowpass filter if the output is taken across the resistor. Calculate the corner frequency f_c if L = 2 mH and $R = 10 \text{ k} \Omega$.

Example – 5

Find the transfer function Vo/Vs of the circuit. Show that the circuit is a lowpass filter.



Example – 6

In a highpass *RL* filter with a cutoff frequency of 100 kHz, *L* = 40 mH. Find *R*.

Example – 7

Design a series *RLC* type bandpass filter with cutoff frequencies of 10 kHz and 11 kHz. Assuming C = 80 pF, find *R*, *L*, and *Q*.

Example – 8

Determine the range of frequencies that will be passed by a series *RLC* bandpass filter with $R = 10 \Omega$, L = 25mH, and $C = 0.4 \mu$ F. Find the quality factor.

Example – 9

Find the bandwidth and center frequency of the bandstop filter

