<u>Lecture – 14</u>

Date: 25.09.2017

• Frequency Response

Introduction

- In sinusoidal circuit analysis, we learnt how to find voltages and currents in a circuit with a constant frequency source.
- However, if the amplitude of the sinusoidal source remain constant and the frequency is varied then one can obtain the circuit's *frequency response*.
- The frequency response may be regarded as a complete description of the sinusoidal steady-state behavior of a circuit as a function of frequency.
- The sinusoidal steady-state frequency responses of circuits are of significance in many applications, especially in communications and control systems.
- A specific application is in electric filters that block out or eliminate signals with unwanted frequencies and pass signals of the desired frequencies.
- Filters are used in radio, TV, and telephone systems to separate one broadcast frequency from another.

Transfer Function

- The transfer function (also called the *network function*) is a useful analytical tool for finding the frequency response of a circuit.
- It is represented by $H(\omega)$.

 $H(\omega) =$

• Circuit's frequency response is essentially the plot of $H(\omega)$ when ω varies between 0 and ∞ .

It is the frequency-dependent ratio of a phasor output $\mathbf{Y}(\omega)$ to a phasor input $\mathbf{X}(\omega)$.

• Since the input and output can be either voltage or current at any place in the circuit, there are four possible transfer functions:

$$\mathbf{H}(\omega) = \text{Voltage gain} = \frac{\mathbf{V}_o(\omega)}{\mathbf{V}_i(\omega)} \qquad \qquad \mathbf{H}(\omega) = \text{Current gain} = \frac{\mathbf{I}_o(\omega)}{\mathbf{I}_i(\omega)}$$
$$\mathbf{H}(\omega) = \text{Transfer Impedance} = \frac{\mathbf{V}_o(\omega)}{\mathbf{I}_i(\omega)} \qquad \qquad \mathbf{H}(\omega) = \text{Transfer Admittance} = \frac{\mathbf{I}_o(\omega)}{\mathbf{V}_i(\omega)}$$

Being a complex quantity, $H(\omega)$ has a magnitude $H(\omega)$ and a phase φ .

Transfer Function (contd.)

- The transfer function of a circuit can be obtained by first converting it to frequency-domain equivalent by replacing resistors, inductors, and capacitors with their impedances R, $j\omega L$ and $^{1}/_{i\omega C}$.
- One can then use any circuit technique(s) to obtain the appropriate expressions.

• Can be simplified to: $H(\omega) = \frac{N(\omega)}{D(\omega)}$

The roots of $N(\omega)$ are called the *zeros* and are usually represented as $j\omega = z_1, z_2, \dots$...Similarly, the roots of $D(\omega)$ are the *poles* and are represented as $j\omega = p_1, p_2, \dots$...

A zero is a value that results in a zero value of the function. A pole is a value for which the function is infinite.

To avoid complex algebra, it is expedient to replace temporarily $j\omega$ with s when working with $H(\omega)$ and replace s with $j\omega$ at the end.

Example – 1

of the circuit:

R

The

Find the transfer function $\frac{V_0}{V_s}$ and the corresponding frequency response of this *RC* circuit. Assume, $v_s = V_m cos \omega t$.

where $\omega_0 = \frac{1}{RC}$. For plotting *H* and φ for $0 < \omega < 0$ ∞ , we need values at some critical points.

Example – 1 (contd.

Example – 3

Find the transfer function $\frac{V_0}{V_s}$ and the corresponding frequency response of this *RC* circuit. Assume, $\omega_0 = \frac{1}{RC}$.

Example – 4

Find the transfer function $\frac{V_0}{V_i}$ of the following circuits. CL000 + ╋ R > R \mathbf{V}_i \mathbf{V}_o \mathbf{V}_i \mathbf{V}_o R С $\widetilde{\mathfrak{Z}}L$ (b)

(a)

Example – 5

For this circuit, calculate the gain $\frac{I_0(\omega)}{I_i(\omega)}$ and its poles and zeros.

Example – 6

For this circuit, calculate the gain $\frac{V_0(\omega)}{I_i(\omega)}$ and its poles and zeros.