

<u>Lecture – 7</u>

Date: 29.08.2016

• AC Circuits: Impedance and Admittance, Kirchoff's Laws, Phase Shifter, AC bridge

Impedance and Admittance

• we know: $\mathbf{V} = R\mathbf{I}$, $\mathbf{V} = j\omega L\mathbf{I}$, $\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$

• we express Ohm's law in phasor form: $Z = \frac{V}{I}$ or V = ZI

where **Z** is a frequency-dependent quantity known as *impedance*, measured in ohms. It is the ratio of the phasor voltage **V** to the phasor current **I**, measured in Ω.

$$\mathbf{Z}_L = j\omega L$$
 and $\mathbf{Z}_C = -j/\omega C$

- For $\omega = 0$ (i.e., dc sources): $Z_L = 0$ and $Z_C \rightarrow \infty$.
- the inductor acts like a short circuit, while the capacitor acts like an open circuit.
 - For $\omega \to \infty$ (i.e., high frequencies): $Z_L \to \infty$ and $Z_C = 0$.
 - the inductor acts like an open circuit, while the capacitor acts like a short circuit.

 $\frac{\mathbf{V}}{\mathbf{I}} = R, \qquad \frac{\mathbf{V}}{\mathbf{I}} = j\omega L, \qquad \frac{\mathbf{V}}{\mathbf{I}} = \frac{1}{j\omega C}$

Impedance and Admittance

• complex quantity $\mathbf{Z} = R + j\mathbf{X}$ $\mathbf{Z} = |\mathbf{Z}| \underline{\theta}$

 $R = |\mathbf{Z}|\cos\theta, \quad X = |\mathbf{Z}|\sin\theta \quad |\mathbf{Z}| = \sqrt{R^2 + X^2}, \quad \theta = \tan^{-1}\frac{X}{R}$

• It is sometimes (parallel circuits) convenient to work with the reciprocal of impedance, known as *admittance* (Y).

Example – 1

A linear network has a current input $4\cos(\omega t + 20^\circ)$ A and a voltage output $10\cos(\omega t + 110^\circ)$ V. Determine the associated impedance.

ECE215

Example – 2

What value of ω will cause the forced response v_0 in this circuit to be zero?

Example – 3

Find current *i* in this circuit, when $v_s(t) = 50cos200t$ V.

 2Ω

5 mF

20 mH

ECE215

Example – 4

Find current *i* in this circuit, when $v_s(t) = 60\cos(200t - 10^\circ)$ V.

Example – 5

Determine the admittance **Y** for this circuit.

Example – 6

Find current *i* in this circuit.

Kirchoff's Laws

- cannot do circuit analysis in the frequency domain without Kirchhoff's current and voltage laws.
- Therefore, need to express them in the frequency domain.

For KVL, let v_1, v_2, \dots, v_n are the voltages around a closed loop.

Kirchhoff's voltage law holds for phasors.

Similarly, one can prove that Kirchhoff's current law holds in the frequency domain

Impedance Combinations

$$\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2 + \dots + \mathbf{V}_N$$
$$= \mathbf{I}(\mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_N)$$
$$\mathbf{Z}_{eq} = \frac{\mathbf{V}}{\mathbf{I}} = \mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_N$$

This is similar to the series connection of resistances.

voltage-division relationship

Impedance Combinations (contd.)

$$\mathbf{Z}_{eq} = \frac{1}{\mathbf{Y}_{eq}} = \frac{1}{\mathbf{Y}_{1} + \mathbf{Y}_{2}} = \frac{1}{1/\mathbf{Z}_{1} + 1/\mathbf{Z}_{2}} = \frac{\mathbf{Z}_{1}\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}$$
$$\mathbf{V} = \mathbf{I}\mathbf{Z}_{eq} = \mathbf{I}_{1}\mathbf{Z}_{1} = \mathbf{I}_{2}\mathbf{Z}_{2}$$
$$\mathbf{I}_{1} = \frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}, \qquad \mathbf{I}_{2} = \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}$$

the *current-division* principle.

ECE215

Example – 7

For this circuit, calculate \mathbf{Z}_{T} and \mathbf{V}_{ab} .

Example – 8

Find the equivalent admittance \mathbf{Y}_{eq} of this circuit.

0

 \mathbf{Z}_{eq}

Example – 9

Find the equivalent impedance of this circuit.

Phase Shifter

• A phase-shifting circuit is used for correcting undesirable phase shift present in a circuit.

ECE215

- It is also used for the creation of desired phase shifts.
- RC and RL circuits are extremely useful for this purpose.

the circuit current I leads the applied voltage by some phase angle θ , where $0 < \theta < 90^{\circ}$ depending on the values of *R* and *C*.

$$\mathbf{Z} = R + jX_C, \qquad \qquad \theta = \tan^{-1}\frac{X_C}{R}$$

the amount of phase shift depends on the values of *R*, *C*, and the operating frequency.

- These simple single stage RC circuits are generally not used in practice.
- These RC circuits also work as voltage dividers. Therefore, as the phase shift approaches 90° the output voltage approaches zero. For this reason, these simple *RC* circuits are used only when small amounts of phase shift are required.
- For large phase shifts, the *RC* networks are cascaded. This provides a total phase shift equal to the sum of the individual phase shifts.

Example – 10

For this RC circuit: (a) Calculate the phase shift at 2 MHz. (b) Find the frequency where the phase shift is 45°.

Example – 11

A coil with impedance $8 + i6 \Omega$ is connected in series with a capacitive reactance X. The series combination is connected in parallel with a resistor R. Given that the equivalent impedance of the resulting circuit is $5 \angle 0^{\circ} \Omega$, find the value of R and X.

ECE215

Example – 12

Consider this phase-shifting circuit.

(a) \mathbf{V}_o when *R* is maximum

- (b) \mathbf{V}_o when *R* is minimum
- (c) the value of *R* that will produce a phase shift of 45°.

AC Bridges

- An ac bridge circuit is used for measuring the inductance *L* of an inductor or the capacitance *C* of a capacitor.
- Similar to the Wheatstone bridge used for measuring an unknown resistance and follows the same principle.
- To measure *L* and *C*, however, an ac source is needed as well as an ac meter instead of the galvanometer.
- The ac meter may be a sensitive ac ammeter or voltmeter.

bridge is *balanced* when no current flows through the meter i.e., V1 = V2.

$$\mathbf{V}_1 = \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}_s = \mathbf{V}_2 = \frac{\mathbf{Z}_x}{\mathbf{Z}_3 + \mathbf{Z}_x} \mathbf{V}_s \qquad \qquad \mathbf{Z}_x = \frac{\mathbf{Z}_3}{\mathbf{Z}_1} \mathbf{Z}_2$$

ECE215

ECE215

AC Bridges (contd.)

Example – 13

This ac bridge is known as a *Maxwell bridge* and is used for accurate measurement of inductance and resistance of a coil in terms of a standard capacitance S_s . Show that when the ridge is balanced:

ECE215

$$L_{x} = R_{2}R_{3}C_{s}$$
 $R_{x} = \frac{R_{2}}{R_{1}}R_{3}$

Example – 14

This ac bridge is called a *Wien bridge*. It is used for measuring the frequency of a source. Show that when the bridge is balanced: 1

$$f = \frac{1}{2\pi\sqrt{R_2R_4C_2C_4}}$$

