ECE215

Lecture - 7

Date: 29.08.2016

- AC Circuits: Impedance and Admittance, Kirchoff's Laws, Phase Shifter, AC bridge

ECE215

Impedance and Admittance

- we know: $\quad \mathbf{V}=R \mathbf{I}, \quad \mathbf{V}=j \omega L \mathbf{I}, \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C}$

$$
\frac{\mathbf{V}}{\mathbf{I}}=R, \quad \frac{\mathbf{V}}{\mathbf{I}}=j \omega L, \quad \frac{\mathbf{V}}{\mathbf{I}}=\frac{1}{j \omega C}
$$

- we express Ohm's law in phasor form: $\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}} \quad$ or $\quad \mathbf{V}=\mathbf{Z I}$
where \mathbf{Z} is a frequency-dependent quantity known as impedance, measured in ohms. It is the ratio of the phasor voltage \mathbf{V} to the phasor current I, measured in Ω.

$$
\mathbf{Z}_{L}=j \omega L \text { and } \mathbf{Z}_{C}=-j / \omega C
$$

- For $\omega=0$ (i.e., dc sources): $Z_{L}=0$ and $Z_{C} \rightarrow \infty$.
- the inductor acts like a short circuit, while the capacitor acts like an open circuit.
- For $\omega \rightarrow \infty$ (i.e., high frequencies): $Z_{L} \rightarrow \infty$ and $Z_{C}=0$.
- the inductor acts like an open circuit, while the capacitor acts like a short circuit.

ECE215

Impedance and Admittance

- complex quantity $\mathbf{Z}=R+j X \longmapsto \mathbf{Z}=|\mathbf{Z}| \angle \theta$

$$
R=|\mathbf{Z}| \cos \theta, \quad X=|\mathbf{Z}| \sin \theta \quad|\mathbf{Z}|=\sqrt{R^{2}+X^{2}}, \quad \theta=\tan ^{-1} \frac{X}{R}
$$

- It is sometimes (parallel circuits) convenient to work with the reciprocal of impedance, known as admittance (Y).

$$
\mathbf{Y}=\frac{1}{\mathbf{Z}}=\frac{\mathbf{I}}{\mathbf{V}} \longrightarrow \mathbf{Y}=G+j B \quad \begin{aligned}
& G=\frac{R}{R^{2}+X^{2}} \\
& B=-\frac{X}{R^{2}+X^{2}}
\end{aligned}
$$

ECE215

Example-1

A linear network has a current input $4 \cos \left(\omega t+20^{\circ}\right) \mathrm{A}$ and a voltage output $10 \cos \left(\omega t+110^{\circ}\right) \mathrm{V}$. Determine the associated impedance.

Example-2

What value of ω will cause the forced response v_{0} in this circuit to be zero?

Example-3

Find current i in this circuit, when $v_{s}(t)=50 \cos 200 t \mathrm{~V}$.

ECE215

Example - 4

Find current i in this circuit, when $v_{s}(t)=60 \cos \left(200 t-10^{\circ}\right) \mathrm{V}$.

Example-5
Determine the admittance \mathbf{Y} for this circuit.

Example-6

Find current i in this circuit.

ECE215

Kirchoff's Laws

- cannot do circuit analysis in the frequency domain without Kirchhoff's current and voltage laws.
- Therefore, need to express them in the frequency domain.

For KVL, let $v_{1}, v_{2}, \ldots \ldots, v_{n}$ are the voltages around a closed loop.

$$
\begin{gathered}
\begin{aligned}
& v_{1}+v_{2}+\cdots+v_{n}=0 \\
& \operatorname{Re}\left(V_{m 1} e^{j \theta_{1}} e^{j \omega t}\right)+\operatorname{Re}\left(V_{m 2} e^{j \theta_{2}} e^{j \omega t}\right)+\cdots+\operatorname{Re}\left(V_{m n} e^{j \theta_{n}} e^{j \omega t}\right)=0 \\
&+\cdots+V_{m n} \cos \left(\omega t+\theta_{1}\right)
\end{aligned}+V_{m 2} \cos \left(\omega t+\theta_{2}\right) \\
\\
\operatorname{Re}\left[\left(V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}+\cdots+V_{m n} e^{j \theta_{n}}\right) e^{j \omega t}\right]=0
\end{gathered}
$$

Kirchhoff's voltage law holds for phasors.
Similarly, one can prove that Kirchhoff's current law holds in the frequency domain

ECE215

Impedance Combinations

$$
\begin{aligned}
& \mathbf{V}=\mathbf{V}_{1}+\mathbf{V}_{2}+\cdots+\mathbf{V}_{N} \\
&=\mathbf{I}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N}\right) \\
& \mathbf{Z}_{\mathrm{eq}}=\frac{\mathbf{V}}{\mathbf{I}}= \mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N}
\end{aligned}
$$

This is similar to the series connection of resistances.

$$
\begin{gathered}
\mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \\
\mathbf{V}_{1}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}, \quad \mathbf{V}_{2}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}
\end{gathered}
$$

voltage-division relationship

ECE215

Impedance Combinations (contd.)

$$
\begin{gathered}
\mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{2}+\cdots+\mathbf{I}_{N}=\mathbf{v}\left(\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\cdots+\frac{1}{\mathbf{Z}_{N}}\right) \\
\frac{1}{\mathbf{Z}_{\mathrm{eq}}}=\frac{\mathbf{I}}{\mathbf{V}}=\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\cdots+\frac{1}{\mathbf{Z}_{N}} \\
\mathbf{Y}_{\mathrm{eq}}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\cdots+\mathbf{Y}_{N}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{Z}_{\mathrm{eq}}=\frac{1}{\mathbf{Y}_{\mathrm{eq}}}=\frac{1}{\mathbf{Y}_{1}+\mathbf{Y}_{2}}=\frac{1}{1 / \mathbf{Z}_{1}+1 / \mathbf{Z}_{2}}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \\
\mathbf{V}=\mathbf{\mathbf { Z } _ { \mathrm { eq } }}=\mathbf{I}_{1} \mathbf{Z}_{1}=\mathbf{I}_{2} \mathbf{Z}_{2}
\end{gathered}
$$

$$
\mathbf{I}_{1}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I}, \quad \mathbf{I}_{2}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I}
$$

the current-division principle.

ECE215

Example-7

For this circuit, calculate \mathbf{Z}_{T} and $\mathbf{V}_{a b}$.

Example-8

Find the equivalent admittance $\mathbf{Y}_{\text {eq }}$ of this circuit.

Example-9

Find the equivalent impedance of this circuit.

ECE215

Phase Shifter

- A phase-shifting circuit is used for correcting undesirable phase shift present in a circuit.
- It is also used for the creation of desired phase shifts.
- RC and RL circuits are extremely useful for this purpose.

the circuit current I leads the applied voltage by some phase angle θ, where $0<\theta<90^{\circ}$ depending on the values of R and C.
$\mathbf{Z}=R+j X_{C}, \longrightarrow \theta=\tan ^{-1} \frac{X_{C}}{R}$

the amount of phase shift depends on the values of R, C, and the operating frequency.

ECE215

Phase Shifter (contd.)

- These simple single stage RC circuits are generally not used in practice.
- These RC circuits also work as voltage dividers. Therefore, as the phase shift approaches 90° the output voltage approaches zero. For this reason, these simple $R C$ circuits are used only when small amounts of phase shift are required.
- For large phase shifts, the $R C$ networks are cascaded. This provides a total phase shift equal to the sum of the individual phase shifts.

ECE215

Example - 10

For this RC circuit:
(a) Calculate the phase shift at 2 MHz .
(b) Find the frequency where the phase shift is 45°.

Example - 11

A coil with impedance $8+j 6 \Omega$ is connected in series with a capacitive reactance X. The series combination is connected in parallel with a resistor R. Given that the equivalent impedance of the resulting circuit is $5 \angle 0^{\circ} \Omega$, find the value of R and X.

Example - 12

Consider this phase-shifting circuit.
(a) \mathbf{V}_{o} when R is maximum
(b) \mathbf{V}_{o} when R is minimum
(c) the value of R that will produce a phase shift of 45°.

ECE215

AC Bridges

- An ac bridge circuit is used for measuring the inductance L of an inductor or the capacitance C of a capacitor.
- Similar to the Wheatstone bridge used for measuring an unknown resistance and follows the same principle.
- To measure L and C, however, an ac source is needed as well as an ac meter instead of the galvanometer.
- The ac meter may be a sensitive ac ammeter or voltmeter.

bridge is balanced when no current flows through the meter i.e., V1 = V2.
$\mathbf{V}_{1}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}_{s}=\mathbf{V}_{2}=\frac{\mathbf{Z}_{x}}{\mathbf{Z}_{3}+\mathbf{Z}_{x}} \mathbf{V}_{s} \quad \square \mathbf{Z}_{x}=\frac{\mathbf{Z}_{3}}{\mathbf{Z}_{1}} \mathbf{Z}_{2}$

AC Bridges (contd.)

$$
L_{x}=\frac{R_{2}}{R_{1}} L_{s}
$$

$$
C_{x}=\frac{R_{1}}{R_{2}} C_{s}
$$

ECE215

Example - 13

This ac bridge is known as a Maxwell bridge and is used for accurate measurement of inductance and resistance of a coil in terms of a standard capacitance S_{S}. Show that when the ridge is balanced:

$$
L_{x}=R_{2} R_{3} C_{s} \quad R_{x}=\frac{R_{2}}{R_{1}} R_{3}
$$

Example - 14

This ac bridge is called a Wien bridge. It is used for measuring the frequency of a source. Show that when the bridge is balanced:

$$
f=\frac{1}{2 \pi \sqrt{R_{2} R_{4} C_{2} C_{4}}}
$$

